

Welcome to the SimPhoNy docs!

SimPhoNy is an ontology-based open-source Python framework that promotes and enables interoperability between any 3rd-party software tool. Here you can learn more about it.

Getting Started

Overview, main concepts, and installation guide

To the getting started guides

Usage Guide

Core functionalities, wrappers and advanced utilities

To the usage guides

Working with Ontologies

Ontology overview, included ontologies, YAML ontologies and ontology querying

To the ontology guides

Wrapper Development

A deep dive into the wrapper mechanism for developing new wrappers

To the wrapper development guides

API Reference

Python API of CUDS, the Session classes, and other utilities

To the API reference

Additional Information

License, acknowledgements, data protection, contact info and more

To get more information

Overview

SimPhoNy is an ontology-based framework aimed at enabling interoperability between different simulation and data management tools, with a focus on materials science.

What can SimPhoNy be used for?

Manipulate ontology-based linked data, a format well suited for FAIR data principles [https://en.wikipedia.org/wiki/FAIR_data]

Linked data [https://en.wikipedia.org/wiki/Linked_data] is a format for structured data that facilitates the interoperability among different data sources. In particular, the data is structured as a directed graph, consistent of nodes and labeled arcs. With SimPhoNy, you can not only manipulate this linked data, but also transform existing non-linked data into linked data.

To better understand the idea of linked data, take a quick glance at the toy example below. It shows data about a city from three different data sources: the city’s traffic authority, a map from a city guide, and the university registry. As some of the concepts are present in multiple datasets, the linked data representation naturally joins all of them into a single one.

[image: Sample linked data]

Linked data about a city from three different sources: the city’s traffic authority, a map from a city guide, and the university registry. Each data source is represented using a different color and column.

Although the example above shows just plain linked data, in SimPhoNy, the linked data is enhanced with ontologies [https://en.wikipedia.org/wiki/Ontology_(information_science)], which give meaning to the data. Specifically, SimPhoNy works with ontologies based on the Web Ontology Language [https://en.wikipedia.org/wiki/Web_Ontology_Language], making the data compatible with the Semantic Web [https://en.wikipedia.org/wiki/Semantic_Web].

Fetch data from a database, run a simulation and immediately store the results

Ontology-based linked data is not only well suited for the interoperability of data, but also of software tools. In SimPhoNy, one can instantiate individuals from special ontology classes called wrappers. These wrappers are in fact a software interface between the core of SimPhoNy (ontology based) and external software tools, disguised to the user as an ontology class. We have already developed wrappers for a few database backends and popular simulation engines for materials science. You can have a look at the existing wrappers on our GitHub organization [https://github.com/simphony]. If needed, you may even consider developing your own!

As a SimPhoNy user, you can see the data stored in the external software tools transparently as ontology individuals through the wrappers. In this way, moving data between different software tools becomes as simple as moving or copying it from one wrapper to another.

For example, linked data stored in a SQLite database can be used to run a simulation just by adding the ontology individuals contained in the SQLite wrapper to the Simulation Engine wrapper. Similarly, the ontology individuals representing the results can be simply added back into the database wrapper.

[image: How wrappers work]

At this point, the results could be fetched again and for example, visualized with the help of a plotting library.

[image: Toy example of simulation results]

 Fundamental concepts

Fundamental concepts

In this section we will present some of the main concepts behind SimPhoNy.

General notions

Degrees of interoperability

There is a multitude of tools and programs out there, all with their own formats and protocols.

Every time a user wants to use one of these tools, they must familiarise themselves with the software.
Furthermore, if they want to integrate multiple tools in one workflow, the must, in most cases,
take care of the conversion on their own.

Based on how tools communicate with other tools, we can define 3 levels:

Compatibility

[image: skinparam { linetype ortho Shadowing false BackgroundColor transparent RectangleBackgroundColor #E3E3E3 RectangleBorderColor black ArrowColor #179c7d } rectangle A rectangle B rectangle C rectangle D A <-> B A <-[hidden]- C C <-> D]

Compatibility

When we say two tools are compatible, they are able to communicate with each other
in a one to one basis.
This means the tools must either use the same format, or be able to convert to the format of the other.

If we compare this to speaking languages, you could say A and B, or C and D speak the same language.
However, A has no way to talk with C or D, for example.

De Facto Standard

[image: skinparam { Shadowing false BackgroundColor transparent RectangleBackgroundColor #E3E3E3 RectangleBorderColor black ArrowColor #179c7d } rectangle A rectangle B rectangle C rectangle D A <--> B A <-> C C <-[hidden]- D B <-[hidden]- D A <-> D]

De Facto Standard

In this case, the level of operability is higher.
All tools know how to communicate with a tool whose format has become a de facto standard.

To continue with our language simile, A would be a translator that speaks the languages of B, C and D.
If B wants to talk to C, they must first relay the message to A,
and A will convert it to a format that C understands.

Interoperability

[image: skinparam { linetype ortho Shadowing false BackgroundColor transparent RectangleBackgroundColor #E3E3E3 RectangleBorderColor black UsecaseBackgroundColor transparent UsecaseBorderColor #55A5D9 ArrowColor #179c7d } usecase x as "open standard" rectangle A rectangle B rectangle C rectangle D A <-down-> x B <-right-> x C <-left-> x D <-up-> x]

Interoperability

The highest level of operability is interoperability.
Here there is no need for all tools to go through the De Facto standard,
because there is a format that is known by all of them and enables all components to communicate among themselves.

This final stage could be compared to all parties using an instant translator that can convert
text from one language into any other.

Interoperability between software tools is one of the most important objectives of the SimPhoNy framework.

Semantic vs. syntactic

We can interpret a word as a specific sequence of characters without caring about the meaning itself.
This way, a simulation engine parsing an input file will know that the integer written after the keyword
step will be used to set the number of iterations the execution loop will run.
It does nothing else, and could as easily use the sequence ppp.

However, for a person, the word step will be a sign representing a specific concept.
It could be the number of rounds in a simulation, but also the consecutive instructions in an algorithm, the
different levels in a stair or the motion a person makes when walking.
Based on the domain, a person can also list other relevant concepts and relationships
(e.g. when thinking of a stair, the material or the width).

Being able to know the semantic meaning of an instance, and hence its connection to other concepts,
is one of the principles of SimPhoNy. For achieving this goal, ontologies play a major role.

Ontology

Important

An ontology is a formal specification of a shared conceptualization.
[Borst, 1997] [https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and-]

Let’s look at the individual components of this definition, starting from the end.

	Conceptualization, an ontology will work on the ideas and relationships in an area of interest.

	Shared, the ideas and concepts are perceived and agreed by multiple people.

	Specification, it will define and describe them in detail, following some predetermined rules and format.

	Formal, meaning it will follow a machine readable syntax.

In a simpler way, an ontology can be seen as the definition of concepts relevant to a given domain,
as well as the relationships between them, in a way that a machine can interpret it.

For a deeper, more detailed analysis of the definition, refer to [Guarino, 2009] [http://dx.doi.org/10.1007/978-3-540-92673-3_0].

Ontologies are more elaborated than taxonomies in that they can include multiple kinds of relationships
(not just parent-child) between complex concepts in big domains.

EMMO

The Elementary Multiperspective Material Ontology (EMMO [https://github.com/emmo-repo/EMMO], previously the European Materials Modelling Ontology) is an ontology developed by the European Materials Modelling Council (EMMC [https://emmc.info/]).
EMMO’s goal is to define a representational system universal for scientists in the field of materials modelling to enable interoperability.

It has been designed from the bottom up, starting with the concepts of different domains and application fields
and generalising into a middle and top level layers, and it is currently being further
developed in multiple projects of the European Union.

SimPhoNy is being developed with the intention of being compatible with EMMO, and an easy installation of the
ontology is available (further explained here).

There is also documentation [https://ontology.pages.fraunhofer.de/documentation/latest/] available for developing an EMMO compliant ontology (requires login).

CUDS

CUDS, or Common Universal Data Structure, is the ontology compliant data format of OSP-core:

	CUDS is an ontology individual: each CUDS object is an instantiation of a class in the ontology.
If we assume a food ontology that describes classes like pizza or pasta, a CUDS object could represent one specific pizza or pasta dish, that exists in the real world.
Similar to ontology individuals, CUDS objects can be related with other individuals/CUDS by relations defined in the ontology. Like a pizza that ‘hasPart’ tomato sauce

	CUDS is API: To allow users to interact with the ontology individuals and their data, CUDS provides a CRUD API.

	CUDS is a container: Depending on the relationship connecting two CUDS objects, a certain instance can be seen as a container of other instances.
We call a relationship that express containment an ‘active relationship’.
In the pizza example, ‘hasPart’ would be an ‘active relationship’. If one would like to share the pizza CUDS object with others, one would like to share also the tomato sauce.

	CUDS is RDF: Internally a CUDS object is only an interface to an RDF-based triple store that contains the data of all CUDS objects.

	CUDS is a node in a graph: : CUDS being individuals in an RDF graph implies that each CUDS object can also be seen as a node in a graph.
This does not conflict with the container perspective, instead we see it as to different views on the data.

Technologies and frameworks

RDF

RDF [https://www.w3.org/RDF/] (Resource Description Framework) is a formal language for describing structured information
used in the Semantic Web. Its first specification was published in 1999 and extended in 2004.

Knowledge is represented in directed graphs where the nodes are either ontological classes,
instances of those classes or literals and the edges the relationships connecting them.

The graph is serialised in the form of triples of the form “subject-predicate-object”

	Subject: The IRI of the entity the triple refers to.
Blank nodes have no IRI, but they are outside of the scope of this thesis.

	Predicate: IRI of the relationship from subject to object.

	Object: Literal or IRI of an entity

The following is an example of an RDF triple. This example will also be used to show the different serialisation formats of RDF.
For the IRIs, dbpedia’s namespace was used.

[image: skinparam { linetype ortho Shadowing false BackgroundColor transparent UsecaseBorderColor black UsecaseBackgroundColor #E3E3E3 ArrowColor #179c7d } (dbr:J._R._R._Tolkien) as tolkien (dbr:The_Lord_of_the_Rings) as lotr lotr -> tolkien : dbo:author]

RDF triple sample

The most used formats for storing RDF data are:

	XML [https://www.w3.org/2001/sw/RDFCore/TR/WD-rdf-syntax-grammar-20030117/]:
Historically the most common format given the amount of libraries for handling it.
It was released hand in hand with the RDF specification.
Unfortunately, XML is best used with tree-like structures rather than graphs,
which also makes it harder for humans to read.

The example triple in XML is:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dbp="http://dbpedia.org/property/">
 <rdf:Description rdf:about="http://dbpedia.org/resource/The_Lord_of_the_Rings">
 <dbp:author rdf:resource="http://dbpedia.org/resource/J._R._R._Tolkien"/>
 </rdf:Description>
</rdf:RDF>

	N3 [https://www.w3.org/TeamSubmission/n3/]: Notation3 is designed with human readability as a motivator.
The RDF triples are written one per line, with the possibility to define common prefixes
and other directives for simplicity.

The previous example in N3 would be:

 @prefix dbo: <http://dbpedia.org/ontology/> .
 @prefix dbr: <http://dbpedia.org/resource/> .
 dbr:The_Lord_of_the_Rings dbo:author dbr:J._R._R._Tolkien .

	Turtle [https://www.w3.org/TR/turtle/]: Based on N3, it strips some of its syntax, making it easier to parse
for machines.
The recurring example would be exactly the same in Turtle as in N3.

	N-Triples [https://www.w3.org/TR/n-triples/]: N-Triples are even simpler, without any of the syntactic sugar from N3 or Turtle.
The triples are written one per line without prefixes. This makes it a very easy format to parse
but complex to maintain/read by a human.

The following representation should be in one line (it has been split for readability)

 <http://dbpedia.org/resource/The_Lord_of_the_Rings>
 <http://dbpedia.org/ontology/author>
 <http://dbpedia.org/resource/J._R._R._Tolkien> .

	JSON-LD [https://www.w3.org/TR/json-ld/]: uses the commonly accepted web data scheme for serialising RDF triples.
Easier than XML for humans, JSON has standard libraries in practically all programming languages.

The example in JSON is:

{
 "@id": "http://dbpedia.org/resource/The_Lord_of_the_Rings",
 "http://dbpedia.org/property/author": [
 { "@id": "http://dbpedia.org/resource/J._R._R._Tolkien" }
]
}

SimPhoNy supports all the previous formats (plus a simpler custom YAML) as inputs in the ontology installation.

SPARQL

SPARQL [https://www.w3.org/TR/sparql11-overview/] (recursively SPARQL Protocol and RDF Query Language) is the most common query language for RDF.
Queries are graph patterns (similar to the triples of Turtle) with variables for the parts of the pattern that make up the result.

Variables start with the identifier ? and represent concrete values that will be matched in the query process.
They can appear in multiple locations in the patterns and those present in the
SELECT clause will be returned as the query result.

The query for the author of The Lord of the Rings from our sample triples in SPARQL is:

 PREFIX dbo: <http://dbpedia.org/ontology/>
 PREFIX dbr: <http://dbpedia.org/resource/>
 SELECT ?person WHERE {
 dbr:The_Lord_of_the_Rings dbo:author ?person .
 }

The SPARQL query language offers multiple types of result sets and clauses, most of which won’t be used for this Master’s thesis.
One which should be mentioned is the FILTER keyword.
This will limit the result to those that evaluate true to the expression inside the brackets.
For instance (omitting the prefix declaration for simplicity):

 SELECT ?character WHERE {
 ?character dbp:affiliation dbr:The_Lord_of_the_Rings .
 ?character dbo:age ?age .
 FILTER(?age >= 100)
 }

The previous query would return the characters from the book series with an age higher or equal to 100.
(Note that while the query is correct, the result is empty, as such information is not stored on DBpedia).

For a very interesting and comprehensive introduction into RDF and SPARQL, see [Hitzler, 2009] [http://dx.doi.org/10.1201/9781420090512].

 General architecture

General architecture

The following architecture has the aim to cover and support the goals presented in the overview section.

[image: skinparam { linetype ortho Shadowing false BackgroundColor transparent UsecaseBackgroundColor #E3E3E3 UsecaseBorderColor black ActorBackgroundColor transparent ActorBorderColor #179c7d DatabaseBackgroundColor transparent DatabaseBorderColor #179c7d PackageBorderColor black PackageBackgroundColor #9FC6DE ArrowColor #179c7d ranksep 10 } actor user rectangle SimPhoNy { usecase "OSP-core" as osp usecase "database\nwrapper" as db_wrapper usecase "simulation\nwrapper" as sim_wrapper usecase wrapper } database database database "simulation\nengine" as sim_engine database backend ' ----------------------- ' ------ RELATIONS ------ ' ----------------------- user <-left-> osp: interacts with db_wrapper <-up-> database: connects to sim_wrapper <-left-> sim_engine: connects to wrapper <-down-> backend: connects to osp <-up-> db_wrapper: updates osp <-left-> sim_wrapper: updates osp <-down-> wrapper: updates]

Interoperability concept

As you can see, OSP-core provides the standard data format and API,
and the wrappers take care of mapping that format to and from the backend specific syntax and API.

In order to simplify and generalise the usage as much as possible, the backend
specific and syntactic knowledge should be abstracted to ontology concepts
that encompass all third party tools.

For that, a 3 layer schema is used:

[image: skinparam { linetype ortho Shadowing false BackgroundColor transparent RectangleBackgroundColor #E3E3E3 RectangleBorderColor black ActorBackgroundColor transparent ActorBorderColor #179c7d DatabaseBackgroundColor transparent DatabaseBorderColor #179c7d PackageBorderColor #55A5D9 PackageBackgroundColor transparent ArrowColor #179c7d ranksep 10 } skinparam rectangle<<invisible>> { BorderColor Transparent BackgroundColor transparent stereotypeFontColor transparent } Actor user rectangle "semantic layer" as sem { } rectangle "interoperability layer" as intop { } rectangle "syntactic layer" as syn { } database backend rectangle gen<<invisible>>[Ontology aware, generic\t] rectangle spe<<invisible>>[\tEngine specific knowledge] ' ----------------------- ' ------ RELATIONS ------ ' ----------------------- user <-> sem sem <-> intop intop <-> syn syn <-> backend user -[hidden]-> gen gen -> spe backend -[hidden]-> spe]

Three layered design

	The Semantic layer are the classes generated from the ontology with the CUDS API.

	The Interoperability layer maps the changes in the semantic layer to calls in the syntactic layer.

	The Syntactic layer provides access to the backend.

The closer to the user, the closer to the ontology concepts.
The abstraction is replaced by specificity when you move towards the backend.

For example, the City, Street or Neighborhood classes from the demonstrative City Ontology included in OSP-core, as well as the individuals that can be instantiated using them, would be part of the semantic layer. Any wrapper (e.g. the included SQLite wrapper [https://github.com/simphony/osp-core/tree/master/osp/wrappers/sqlite]), would be part of the interoperability layer. Finally, following the SQLite example, the sqlite3 library [https://docs.python.org/3/library/sqlite3.html] from python would be part of the syntactic layer.

For a full explanation on the architecture and design, go to detailed design.

OSP-core

OSP-core [https://github.com/simphony/osp-core] is the main component of the SimPhoNy framework.
It is independent of any backend and provides the basic ontology based data structures for the seamless exchange of data between wrappers.

Ontology file

OSP-core requires an ontology file to create the appropriate CUDS classes.

Said ontology must be either in a YAML format as defined by our specification
or one of the supported owl ontologies.

 YAML Ontology sample
 The following is an excerpt from the `city.ontology.yml` in osp-core.

 version: "0.0.3"

 namespace: "city"

 ontology:

 encloses:
 subclass_of:
 - cuba.activeRelationship
 inverse: city.isEnclosedBy

 isEnclosedBy:
 subclass_of:
 - cuba.passiveRelationship
 inverse: city.encloses

 hasInhabitant:
 subclass_of:
 - city.encloses

 ################

 CityWrapper:
 subclass_of:
 - cuba.Wrapper
 - city.hasPart:
 range: city.City
 cardinality: 1+
 exclusive: false

 ################

 City:
 subclass_of:
 - city.PopulatedPlace
 - city.hasPart:
 range: city.Neighborhood
 cardinality: many
 exclusive: true
 - city.isPartOf:
 range: city.CityWrapper
 cardinality: 0-1
 exclusive: true
 - city.hasMajor:
 range: city.Citizen
 cardinality: 0-1
 exclusive: true

 Building:
 subclass_of:
 - city.ArchitecturalStructure
 - city.hasPart:
 range: city.Address
 cardinality: 1
 exclusive: false
 - city.hasPart:
 range: city.Floor
 cardinality: many
 exclusive: false
 - city.isPartOf:
 range: city.Street
 cardinality: 1
 exclusive: true

 Citizen:
 subclass_of:
 - city.Person

OSP-core can be used with EMMO (Elementary Multiperspective Material Ontology) out of the box.
See more here.

Python classes

Upon installation of OSP-core, each ontology class (except from attributes and relationships) becomes a python class.

Since each ontology has a namespace, it can be used to import the classes and create cuds objects:

from osp.core.namespaces import cuba, another_namespace

entity = cuba.Entity()
other_entity = another_namespace.SomeOtherEntity()

Sessions

The sessions are the interoperability classes that connect to where the data is stored.
In the case of wrappers, they take care of keeping consistency between the backends (e.g. databases) and the internal registry.

The CoreSession is the default one used when instantiating a new object in your workspace. When you add an object to a wrapper, a copy of the object is created in the registry belonging to the session of the wrapper.

Wrappers

Like we have mentioned in previous sections, wrappers allow the user to interact
through the cuds API with different backends.

Since each backend is different, for more detailed documentation of each wrapper
we suggest going through the different available repositories [https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/].

For more technical information regarding wrappers, particularly for wrapper developers,
we recommend visiting wrapper development.

 Installation

Installation

For the installation and usage of the framework Python 3.6 or higher is
needed. We highly encourage the use of a virtual environment [https://docs.python.org/3/tutorial/venv.html]
or a conda [https://docs.conda.io/en/latest/] environment.

virtual environment
python3 -m venv SimPhoNy
source SimPhoNy/bin/activate

conda
conda create -n <env_name>
conda activate <env_name>

OSP-core is available on PyPI, so it can be installed using pip:

pip install osp-core

For an installation from source, see here.

After installing OSP-core, you can install your ontology namespaces.
We provide the pico tool for that purpose.

pico install <path/to/ontology.yml>

If you have issues using pico directly, you can use
python -m osp.core.pico install <path/to/ontology.yml>

Wrapper installation

Wrappers are currently not available on PyPI, so they must be installed
from source. First, the repository is cloned:

git clone https://github.com/simphony/<some-wrapper>.git
cd some-wrapper

Local wrapper installation

With OSP-core installed, if the wrapper has its own ontology, it must be installed:

pico install <path/to/ontology.yml>

For the wrappers that require the installation of a backend, a install_engine.sh script is usually provided.
It will automatically call install_engine_requirements.sh, where the engine specific requirements are installed.

./install_engine.sh

Now, the wrapper can be installed:

pip install .

Wrapper Docker image

Some wrappers also provided a Dockerfile [https://docs.docker.com/engine/reference/builder/]
for an automatic installation in a container.
The dockerfile should contain the information needed to run it inside.

Installing OSP-core from source

If you are a developer or an advanced user, you might be interested in
installing OSP-core from source.

To do so, first the repository must be cloned:

git clone https://github.com/simphony/osp-core.git
cd osp-core

The installation is based on setuptools:

build and install (recommended)
pip install .

alternative
python3 setup.py install

or:

build for in-place development (recommended)
pip install -e .

alternative
python3 setup.py develop

 Utilities

Utilities

In this section we will compile a list of useful utility functions, tools and examples of their usage.
These functions are part of OSP-core and are used as an extension of the main API.

pico

Our tool for installing ontologies is called pico.
It is a recursive acronym that stands for Pico Installs Cuds Ontologies.

There are 3 main operations that can be done with pico:

	Install ontologies.

	List the installed ontologies.

	Remove installed ontologies.

pico can be used both from the command-line
and as a Python module within the Python shell.

Using pico from the command line

There are different possible logging levels available, and they can be set via
--log-level <ERROR|WARNING|INFO|DEBUG>. The default value is INFO.

pico installs

Usage:

	pico install <path/to/ontology_yml_file.yml>

	pico install <path/to/ontology_yml_file1.yml> <path/to/ontology_yml_file2.yml> ...

	pico install city foaf emmo dcat2 (the installation of these specific
well-known ontologies is available via this shortcut)

Behaviour:

	The ontology file is parsed, and the entities mapped to Python objects.

	The Python objects can be imported via their namespace from osp.core.namespaces import namespace.

Example:

(venv) user@PC:~$ pico install city
INFO [osp.core.ontology.installation]: Will install the following namespaces: ['city']
INFO [osp.core.ontology.yml.yml_parser]: Parsing YAML ontology file /.../osp-core/osp/core/ontology/docs/city.ontology.yml
INFO [osp.core.ontology.yml.yml_parser]: You can now use `from osp.core.namespaces import city`.
INFO [osp.core.ontology.parser]: Loaded 367 ontology triples in total
INFO [osp.core.ontology.installation]: Installation successful

pico lists

Usage: pico list

Behaviour:

	The installed namespaces and packages are printed out. A package can be
uninstalled and can contain many namespaces. A namespace can be imported
within the Python shell.

Example:

Packages:
 - qe
 - city
Namespaces:
 - xml
 - rdf
 - rdfs
 - xsd
 - cuba
 - owl
 - qe
 - city

pico uninstalls

Usage:

	pico uninstall <package>

	pico uninstall all

Behaviour:

	The specified packages are uninstalled.

	All packages except the uninstalled ones are re-installed.

Example:

(venv) user@PC:~$ pico uninstall city
INFO [osp.core.ontology.installation]: Will install the following namespaces: ['qe']
INFO [osp.core.ontology.yml.yml_parser]: Parsing YAML ontology file /home/<username>/.osp_ontologies/qe.yml
INFO [osp.core.ontology.yml.yml_parser]: You can now use `from osp.core.namespaces import qe`.
INFO [osp.core.ontology.parser]: Loaded 205 ontology triples in total
INFO [osp.core.ontology.installation]: Uninstallation successful

Conflicts with other “pico” installations

Some Operating Systems might have a pre-existing tool called pico.
In most cases, the previous commands should work, but if any problem arises,
you can use the following alternative:

python -m osp.core.pico <command>

For example:

python -m osp.core.pico install city

Using pico as a Python module

pico can also be used within the Python shell. In particular, four
functions are available to be imported from the osp.core.pico module,

from osp.core.pico import install, namespaces, packages, uninstall

that cover the three main operations that pico is meant to perform: installing
ontologies (install), uninstalling ontologies (uninstall), and listing the
installed ontologies (packages, namespaces).

Each function is used in a similar way to its command-line counterpart.

	install: accepts one or more positional arguments of string
type, which can be either paths to yml ontology installation files or
names of ontologies that can be installed via this shortcut. It is meant to
clone the
behavior of its command-line counterpart [https://simphony.readthedocs.io/en/v3.9.0/utils.html#pico-installs].

	uninstall: accepts one or more positional arguments of string type,
which must be names of already installed ontology packages. It also
clones the behavior of its command-line counterpart [https://simphony.readthedocs.io/en/v3.9.0/utils.html#pico-uninstalls].

	packages: accepts no arguments and returns an iterator [https://wiki.python.org/moin/Iterator]
over the names of the installed packages.

	namespaces: accepts no arguments and returns an iterator yielding one
OntologyNamespace object [https://simphony.readthedocs.io/en/v3.9.0/api_ref.html#osp.core.ontology.namespace.OntologyNamespace] for each installed namespace.

Usage examples:

	install('city', 'path/to/ontology_yml_file.yml'), install('foaf', 'dcat2')

	uninstall('city', 'foaf')

	print(list(packages()))

	print(list(namespaces()))

Ontology installation folder

The installed ontologies are stored in the directory ~/.osp-ontologies by
default. On Windows, ~ usually refers to the path
C:\Users\<my username>.

The installation directory can be changed by setting the
environment variable OSP_ONTOLOGIES_DIR. Such action would move it to
$OSP_ONTOLOGIES_DIR/.osp-ontologies.

Tips and tricks

The following are some utility functions and shortcuts for working with cuds.
For those that are present in the util package, the import is from osp.core import utils.

	utils.get_relationships_between(a, b) returns a set with the relationships that connect a and b .

	a.get_attributes() returns a dictionary with the name and the value of the attributes of a.

	a.is_a(oclass) is True if the instance a is or inherits from oclass.

	osp.core.get_entity("namespace.entity") returns the class associated with an entity in a
namespace. It can be used to instantiate objects.

	[attr.argname for attr in oclass.attributes.keys()] returns a list with the attributes of an oclass.

	[attr.namespace for attr in oclass.attributes.keys()] returns a list with the namespace of the attributes of an oclass.

Visualisation

There are two ways of visualising information about a Cuds structure,
one as a text output to the standard output (pretty print),
and another one as a dot [https://www.graphviz.org/pdf/dotguide.pdf] graph (cuds2dot).

Another useful dot graph visualisation tool called ontology2dot is available for ontology YML files.

Warning

The graphic visualisation tools that generate a dot file require Graphviz to be installed in the system.

Pretty print

Location: from osp.core.utils import pretty_print.

Usage: pretty_print(cuds_object)

Behaviour:

	The UUID, oclass and attributes of the given object are printed.

	All the related objects are also printed in a recursive fashion.

	The relationship to the contained objects is stated.

Example:

>>> pretty_print(emmo_town)
Cuds object named <EMMO town>:
 uuid: 06b01f5a-e8c1-44a5-962d-ea0c726e97d0
 type: city.City
 superclasses: city.City, city.PopulatedPlace, city.GeographicalPlace, cuba.Entity
 values: coordinates: [42 42]
 description:
 To Be Determined

 |_Relationship city.hasInhabitant:
 | - city.Citizen cuds object named <Emanuele Ghedini>:
 | . uuid: f1bd9143-6472-4b24-94b5-1c5fc4c6e5b6
 | . age: 25
 | - city.Citizen cuds object named <Adham Hashibon>:
 | . uuid: 3b774c96-1a0c-403b-b0d0-05d6cd38c52c
 | . age: 25
 | - city.Citizen cuds object named <Jesper Friis>:
 | . uuid: 40d2335c-a335-4d07-b142-fb2b9b7581a7
 | . age: 25
 | - city.Citizen cuds object named <Gerhard Goldbeck>:
 | . uuid: a5b9282a-ec10-462d-9aa1-9671d8bbe236
 | . age: 25
 | - city.Citizen cuds object named <Georg Schmitz>:
 | . uuid: c7c87209-660f-4a54-9c37-7e50c3164bc9
 | . age: 25
 | - city.Citizen cuds object named <Anne de Baas>:
 | uuid: d74cfbae-9699-4998-a1e2-8f495a874ced
 | age: 25
 |_Relationship city.hasPart:
 - city.Neighborhood cuds object named <Ontology>:
 . uuid: 26c4767d-c0ea-4abb-b7b7-7e8702de5de3
 . coordinates: [0 0]
 . |_Relationship city.hasPart:
 . - city.Street cuds object named <Relationships>:
 . . uuid: 23b0ba0d-1601-4824-b6c7-7eb3fdc05a91
 . . coordinates: [0 0]
 . - city.Street cuds object named <Entities>:
 . uuid: b69d40d0-b919-4df8-8334-b898e4beda83
 . coordinates: [0 0]
 - city.Neighborhood cuds object named <User cases>:
 uuid: 79a214f6-4eb1-4a3b-8908-306129583da1
 coordinates: [0 0]

Cuds2Dot

Location: from osp.core.utils import Cuds2dot.

Usage: Cuds2dot(cuds_object).render()

Behaviour:

	Each entity is represented by a node.

	The relationships are the edges connecting them.

	The attributes, uuid and oclass are written inside the nodes.

Example:

>>> Cuds2dot(emmo_town).render()

[image:]

Ontology2Dot

Location: console entry point osp.core.tools.ontology2dot.

Usage: ontology2dot

Behaviour:

	Each ontology entity is represented by a box.

	Attributes and their default values are stated.

	Inheritance of entities is shown via is_a.

	The inverse of each relationship is also represented.

Example:

ontology2dot osp/core/ontology/yml/ontology.city.yml

[image:]

Search

To make searching (in-depth) for a particular cuds object easier,
we have implemented some simple search utility functions.

Simple search

Location: import osp.core.utils.simple_search

Usage:

	find_cuds_object(criterion, root, rel, find_all, max_depth=float("inf"), current_depth=0, visited=None)
finds a cuds object under root, related via rel that returns True for criterion (boolean function).
If find_all is set to True, it will return all elements, and not only the first found.

	find_cuds_object_by_uid(uid, root, rel)
finds an element with given uid inside a cuds object by considering the given relationship.

	find_cuds_objects_by_oclass(oclass, root, rel)
finds an element with given oclass inside a cuds object by considering the given relationship.

	find_cuds_objects_by_attribute(attribute, value, root, rel)
finds a cuds object by attribute and value by only considering the given relationship.

	find_relationships(find_rel, root, consider_rel, find_sub_rels=False)
finds the given relationship in the subtree of the given root.

Examples:

	To find all the inhabitants in a city with a given name:

queried_name = 'Pablo'
search.find_cuds_object(criterion = lambda x: queried_name in x.name,
 root=city_cuds,
 rel=city.hasInhabitant,
 find_all=True)

	To find an object when the uid and relationship are known:

queried_uid = uuid.uuid4()
search.find_cuds_object_by_uid(uid=queried_uid,
 root=city_cuds,
 rel=city.get_default_rel())

	To find all the streets that are part of a city:

search.find_cuds_objects_by_oclass(oclass=city.Street,
 root=city_cuds,
 rel=city.hasPart)

	To find all the inhabitants with an attribute age with value 26:

search.find_cuds_objects_by_attribute(attribute='age',
 value=26,
 root=city_cuds,
 rel=city.hasInhabitant)

Serialization JSON schema of CUDS objects

When you serialize a CUDS object using the
serialize() method in the utils module,
you will get a json document as a result.
The method will traverse the hierarchical datastructure
using Depth First Traversal.
Therefore, its result is a json array composed of several flat CUDS objects.

This array can later be deserialized using the opposite
deserialize.

The serialization is done via JSON-LD [https://json-ld.org/],
with the schema used for the OSP API in Marketplace [https://gitlab.cc-asp.fraunhofer.de/MarketPlace/osp-api].

 Tutorial: CUDS API

Tutorial: CUDS API

[image: Binder] [https://mybinder.org/v2/gh/simphony/docs/v3.9.0?filepath=docs%2Fsource%2Fjupyter%2Fcuds_api.ipynb]

This tutorial introduces the CUDS API. The code given here is based on this [https://github.com/simphony/osp-core/blob/master/examples/api_example.py] example.

Note that that this tutorial, as all others in this documentation, are Jupyter notebooks that can be downloaded by clicking on the “Edit on Github” button on the top right of the page.

Background

CUDS stands for Common Universal Data Structure, and it is used to uniformly represent ontology individuals. In the python implementation of OSP-core, it means that every ontology individual is an instance of the Cuds class.

As every CUDS object is an ontology individual, each CUDS is related to an ontology class via the ontological is a relation, and can be connected to other CUDS objects through ontology relationships. In the python implementation of OSP-core, all such ontological classes are instances of the OntologyClass class, which is itself a subclass of OntologyEntity. The ontology entitites are organized in namespaces.

In OSP-core, the ontology relationships can be tagged as active or passive relationships. This is done in the ontology installation file. Such feature lets CUDS objects act as containers, so that content of a CUDS object consists of other CUDS objects. This means that a CUDS is a recursive data structure [https://en.wikipedia.org/wiki/Recursive_data_type]. Such active and passive relationships are directed, meaning that they have a source and a target. If a CUDS is the source of a connection
via an active relationship to another CUDS, then the former contains the latter. Conversely, if a passive relationship is used, then the latter is contained in the former. Untagged ontology relationships do not define any containment.

Note: currently, each time a source CUDS object is connected to another target CUDS object through an active relationship, an inverse passive relationship is also created, connecting the target CUDS (acting as source) and the source CUDS (acting as target).

[image: af7be39149b14d28b14455910feec5a3]

Containment in CUDS objects. On the graph view of the left hand side, the arrows depict active relationships, while the segment depicts any other untagged ontology relationship. On the right hand side, a containment view is provided.

The most important functionalities that the CUDS data structure exposes as python methods are the following:

	add: Connects the current CUDS object to one or more CUDS objects through a specific ontology relationship. If the chosen relationship is not an active relationship, one CUDS will not contain the other nor viceversa.

	remove: Despite its name, it does NOT delete the CUDS object itself. Instead, it just disconnects the current CUDS object from one or more CUDS objects.

	get: Returns the CUDS objects connected to the current CUDS object through a specific ontology relationship.

	iter: Similar to the get method, it just returns one CUDS objects at a time instead of all at once (python iterator [https://python.land/deep-dives/python-iterator]), so that memory can be saved.

	is_a: Checks if the CUDS object is an instance of the given ontology class.

In addition, other important functionalities are exposed as python properties:

	oclass: The ontology class of the ontology individual represented by the CUDS object. If the individual belongs to multiple classes, only one of them is referenced by the property.

	uid: A unique ID identifying an ontology individual.

	iri: The Internationalized Resource Identifier [https://fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-urn-and-their-differences/] of the CUDS object. It consists of a CUDS namespace prefix and the unique ID of the CUDS object. This will be further clarified in the tutorial.

	attributes: The values of the ontology attributes of an individual (also known as data properties [https://www.w3.org/TR/owl2-syntax/#Data_Properties] in OWL [https://en.wikipedia.org/wiki/Web_Ontology_Language]) may also be accessed and modified as python properties of the CUDS objects. For example: cuds_object.name = "Bob".

There are some advanced functionalities NOT covered in this tutorial. Among them, we highlight the update method, which is covered in the wrapper tutorial, where it can be seen in action. For a complete list of available methods and properties, check the API reference. That whole set of methods and attributes constitutes the CUDS API [https://en.wikipedia.org/wiki/API].

Let’s get hands on

In this tutorial, we will work with the city namespace, the example namespace from OSP-core. It consists of concepts from the example city ontology [https://github.com/simphony/osp-core/blob/master/osp/core/ontology/docs/city.ontology.yml].

The first step is to install the city ontology. Use the tool pico for this. If you want to know more about ontology installation, check the documentation on the pico ontology installation tool [https://simphony.readthedocs.io/en/v3.9.0/utils.html#pico-installs-cuds-ontologies], YAML ontology installation files [https://simphony.readthedocs.io/en/v3.9.0/working_with_ontologies.html#osp-core-yaml-ontology-format], and installing OWL
ontologies [https://simphony.readthedocs.io/en/latest/working_with_ontologies.html#owl-ontologies-and-rdfs-vocabularies].

[1]:

!pico install city

INFO 2021-04-01 13:40:41,433 [osp.core.ontology.installation]: Will install the following namespaces: ['city']
INFO 2021-04-01 13:40:41,448 [osp.core.ontology.yml.yml_parser]: Parsing YAML ontology file /home/jose/.local/lib/python3.9/site-packages/osp/core/ontology/docs/city.ontology.yml
INFO 2021-04-01 13:40:41,476 [osp.core.ontology.yml.yml_parser]: You can now use `from osp.core.namespaces import city`.
INFO 2021-04-01 13:40:41,476 [osp.core.ontology.parser]: Loaded 202 ontology triples in total
INFO 2021-04-01 13:40:41,491 [osp.core.ontology.installation]: Installation successful

Then you can import the city namespace.

[2]:

If you just installed the ontology from within this notebook and this line doesn't work, please restart the kernel and run this cell again.
from osp.core.namespaces import city

You are now creating some CUDS objects that you are going to use to try out the functionalities of the CUDS data structure.

[3]:

c = city.City(name="Freiburg", coordinates=[47, 7]) # Ontology individual representing the city of Freiburg.
p1 = city.Citizen(name="Peter") # Ontology indidual representing a specific person, "Peter".
p2 = city.Citizen(name="Anne") # Ontology individual representing another specific person, "Anne".

The names c, p1, p2 are assigned to the newly created CUDS objects. The keyword arguments name and coordinates let you directly assign values for such ontology attributes (also known as data properties [https://www.w3.org/TR/owl2-syntax/#Data_Properties] in OWL [https://en.wikipedia.org/wiki/Web_Ontology_Language]) to the new CUDS objects. The available ontology attributes for each ontology class depend on the specific class being instantiated. For example, the ontology
attribute name is available for both the City and the Citizen ontology classes in the sample City ontology. The attribute coordinates is available for the City ontology class, but not for the Citizen class.

Functionalities exposed as python properties

Each CUDS object has a unique identifier (UID), which can be accessed using the uid property:

[4]:

print("uid of c: " + str(c.uid))
print("uid of p1: " + str(p1.uid))
print("uid of p2: " + str(p2.uid))

uid of c: e0b721ae-6004-4834-80f1-e6e979952d1f
uid of p1: 63874785-0de6-43ad-8669-999482501ad1
uid of p2: 39c7334f-ef62-4dbc-ae2e-390d7f3ca641

Similarly, each CUDS object has an IRI [https://fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-urn-and-their-differences/], which serves to reference it in the Semantic Web [https://en.wikipedia.org/wiki/Semantic_Web] and improves the compatibility of the CUDS format with the Resource Description Framework [https://en.wikipedia.org/wiki/Resource_Description_Framework] data model. Note that the IRI of each CUDS object contains its unique identifier.

[5]:

print("IRI of c: " + str(c.iri))
print("IRI of p1: " + str(p1.iri))
print("IRI of p2: " + str(p2.iri))

IRI of c: http://www.osp-core.com/cuds#e0b721ae-6004-4834-80f1-e6e979952d1f
IRI of p1: http://www.osp-core.com/cuds#63874785-0de6-43ad-8669-999482501ad1
IRI of p2: http://www.osp-core.com/cuds#39c7334f-ef62-4dbc-ae2e-390d7f3ca641

The class of the ontology individual represented by the CUDS object can be queried as well:

[6]:

print("oclass of c: " + str(c.oclass))
print("oclass of p1: " + str(p1.oclass))
print("oclass of p2: " + str(p2.oclass))

oclass of c: city.City
oclass of p1: city.Citizen
oclass of p2: city.Citizen

The uid, iri and oclass properties cannot be modified.

Finally, the values of the ontology attributes of an individual can be easily accessed and modified using the dot notation.

[7]:

print(f"Name of c: {c.name}. Coordinates of c: {c.coordinates}.")
print("Name of p1: " + str(p1.name))
print("Name of p2: " + str(p2.name))

print(f"\nChange the name of {p1.name}.")
p1.name = "Bob"
print(f"Name of p1: {p1.name}.")

Name of c: Freiburg. Coordinates of c: [47 7].
Name of p1: Peter
Name of p2: Anne

Change the name of Peter.
Name of p1: Bob.

Functionalities exposed as python methods

Now, we may connect the two citizens to our city object:

[8]:

c.add(p1, rel=city.hasInhabitant)
c.add(p2, rel=city.hasInhabitant)

[8]:

<city.Citizen: 39c7334f-ef62-4dbc-ae2e-390d7f3ca641, CoreSession: @0x7f3a5778ef70>

Note that the relationship type between the city and its two citizens in this case is ‘hasInhabitant’. In our context, this means that Anne and Peter are Freiburg inhabitants. Moreover, in the city ontology [https://github.com/simphony/osp-core/blob/master/osp/core/ontology/docs/city.ontology.yml], this relationship is defined as an active relationship. This means that Anne and Peter are not only connected to Freiburg, but are also contained in the Freiburg CUDS object.

Next, we would like to iterate over the objects contained in the city object. We do so by using the iter function:

[9]:

for el in c.iter():
 print("uid: " + str(el.uid))

uid: 63874785-0de6-43ad-8669-999482501ad1
uid: 39c7334f-ef62-4dbc-ae2e-390d7f3ca641

We can get a target object from a CUDS object if we have a UID of one of its immediate contained objects. This will not work if the target object is not contained in the CUDS object, but just connected to it.

[10]:

print(c.get(p1.uid)) # `p1`is contained in `c` because they are connected through an active relationship.
print(p1.get(c.uid)) # `c` is connected to `p1`, but it is NOT contained in `p1`.

city.Citizen: 63874785-0de6-43ad-8669-999482501ad1
None

We can also filter the contained objects by type:

[11]:

print(c.get(oclass=city.Citizen))

[<city.Citizen: 63874785-0de6-43ad-8669-999482501ad1, CoreSession: @0x7f3a5778ef70>, <city.Citizen: 39c7334f-ef62-4dbc-ae2e-390d7f3ca641, CoreSession: @0x7f3a5778ef70>]

We remove objects using the remove() function. Despite its name, this just disconnects the target object from the CUDS, but does NOT delete the target object from the memory.

[12]:

c.remove(p1)
c.remove(p1.uid) also works!
print(p1) # `p1` still exists,
print(c.get(p1.uid)) # but is no longer connected neither contained in `c`.

city.Citizen: 63874785-0de6-43ad-8669-999482501ad1
None

Let’s close this tutorial by adding some neighborhoods in a loop,

[13]:

for i in range(6):
 c.add(city.Neighborhood(name="neighborhood %s" % i))

and then verifying that they are indeed neighborhoods, just to also try the is_a method.

[14]:

all(n.is_a(city.Neighborhood) for n in c.get(oclass=city.Neighborhood))

[14]:

True

The existing ontology individuals and the relationships among them have been depicted below, using the utility pretty_print (see the Utilities section [https://simphony.readthedocs.io/en/v3.9.0/utils.html?highlight=pretty_print]). Note that some attributes that were not specified were set automatically to the default values specified in the ontology.

[15]:

from osp.core.utils import pretty_print
pretty_print(c)

- Cuds object named <Freiburg>:
 uuid: e0b721ae-6004-4834-80f1-e6e979952d1f
 type: city.City
 superclasses: city.City, city.GeographicalPlace, city.PopulatedPlace, cuba.Entity
 values: coordinates: [47 7]
 description:
 To Be Determined

 |_Relationship city.hasInhabitant:
 | - city.Citizen cuds object named <Anne>:
 | uuid: 39c7334f-ef62-4dbc-ae2e-390d7f3ca641
 | age: 25
 |_Relationship city.hasPart:
 - city.Neighborhood cuds object named <neighborhood 0>:
 . uuid: 79eec4f9-55c5-464d-b6c3-dc4382e55476
 . coordinates: [0 0]
 - city.Neighborhood cuds object named <neighborhood 1>:
 . uuid: 50fa8dac-2f5f-4b2c-ab8a-24f7f1b41f2c
 . coordinates: [0 0]
 - city.Neighborhood cuds object named <neighborhood 2>:
 . uuid: f6c20bfa-c29b-46bb-a5f5-8bc88b3e3621
 . coordinates: [0 0]
 - city.Neighborhood cuds object named <neighborhood 3>:
 . uuid: e161ea1c-40d8-4556-93ad-dfd4d178d669
 . coordinates: [0 0]
 - city.Neighborhood cuds object named <neighborhood 4>:
 . uuid: a3af8db2-28cd-457b-84ed-b420be5212c2
 . coordinates: [0 0]
 - city.Neighborhood cuds object named <neighborhood 5>:
 uuid: 8de47383-4416-44be-99dc-e5903b1d14dd
 coordinates: [0 0]

 Tutorial: Sessions and variables

Tutorial: Sessions and variables

In this tutorial we will explain how objects and the variables assigned to them behave with different sessions. This tutorial is not available on binder since wrapper_x and wrapper_y are fictional implementations for educational purposes.

Background

Some use cases of OSP-core, like coupling and linking, require interaction between multiple sessions. Even using just one wrapper usually means working with the default CoreSession initially, and then the wrapper session.

When an object from one session is added to a different one, a deepcopy of the object is carried out. This means that both objects are technically the same at that point (same uid, oclass, relationships…), but reside in different memory areas and can theoretically differ in the future. The purpose of this behaviour is to allow selective synching and enable different sessions to have different states of an instance.

Variables that point to an object in the origin session will keep pointing to it (and not to the added session) unless explicitedly updated.

Here we will try to explain said behaviour with simple illustrative examples.

Note: This tutorial is not meant to be run like the others. The session classes and ontology entities are not real implementations. However, the behaviour shown will be the same as that of a real setup.

Let’s show an example

We start by importing the necessary components, namely the session and a sample namespace:

[]:

from osp.core.namespaces import namespace
from osp.wrappers.wrapper_x import SessionX
from osp.wrappers.wrapper_y import SessionY

We can now instantiate the Session objects and bind them to wrapper instances:

[]:

sess_x = SessionX()
sess_y = SessionY()

wrapper_x = namespace.WrapperX(session=sess_x)
wrapper_y = namespace.WrapperY(session=sess_y)

Next, we will add some entities to the wrappers. For simplicity, we will use the session parameter available to all entities in their initialisation. This is just to explicitly work with SessionX and SessionY, without worrying about the default CoreSession.

[]:

a = namespace.A(session=sess_x, name="a")
wrapper_x.add(a)

b = namespace.B(session=sess_y, name="b")
wrapper_y.add(b)

Let’s add a to wrapper_y:

[]:

wrapper_y.add(a)

After the previous statement, both wrappers have an identical version of a. However, they are not linked together. This means one can be changed and the other one won’t be. Also, the variable a points to the instance inside wrapper_x, and there is no reference to the one inside wrapper_y. We can test that:

[4]:

a.name = "a updated"

a_in_y = wrapper_y.get(a.uid)

print("Name of a: ", a.name)
print("Name of a_in_y: ", a_in_y.name)

Name of a: a updated
Name of a_in_y: a

As you can see, changing the name through a, which points to the object in SessionX, only changed one version. Also bear in mind that SessionX and SessionY represent two arbitrary sessions, so this situation could arise when adding objects to a wrapper from the normal instantiation (remember that objects reside in the CoreSession by default).

In order to get a reference to the added object, you can assign the return of the call to add to a variable. For example:

[]:

b = wrapper_x.add(b)

That way we can modify the name of b in wrapper_x more easily:

[5]:

b.name = "b updated"

b_in_y = wrapper_y.get(b.uid)

print("Name of b: ", b.name)
print("Name of b_in_y: ", b_in_y.name)

Name of b: b updated
Name of b_in_y: b

Summary

In short, these are the things you should be aware of:

	Adding an object to a different session creates a deepcopy.

	Two versions of the same instance (same uid and type) in different sessions are not automatically synced.

	Variables point to an object in a session, and will not change when the objects are added somewhere else.

	If you want to quickly assign a variable to an object in a new session, you can capture the return of the add call.

 Tutorial: Multiple wrappers

Tutorial: Multiple wrappers

This tutorial introduces the use of multiple data sources, and shows how can one exchange information between them. The code given here is based on this example [https://github.com/simphony/osp-core/blob/master/examples/multiple_wrappers_example.py] and builds on the introduction on the CUDS API.

Background

One of the main strengths of CUDS objects is their ability to share information between different underlying data sources interchangeably. Using OSP-core’s inner workings a data source can be represented as a CUDS object. A data source can be in turn a database, a simulation engine, or any other software package, which is able to either generate or store information.

We refer to a CUDS object, which represents an underlying data source as a wrapper, as it wraps around the data source. Wrappers use the CUDS API with the addition to some wrapper-specific methods, which will be discussed later on in this tutorial.

For a wrapper to be initialized, one needs some context for the underlying data source (e.g. location, credentials, etc.) for this we introduce an object called session. Conceptually a session can be thought as an interoperability level, or in simple terms it handles the transition from the user-friendly CUDS API to the more task-specific syntax data sources tend to have.

Let’s get hands on

We start by importing the example namespace of OSP-core. If you haven’t already, you should install the city ontology before:

[1]:

!pico install city

INFO 2020-12-02 11:54:26,244 [osp.core.ontology.installation]: Will install the following namespaces: ['city']
INFO 2020-12-02 11:54:26,280 [osp.core.ontology.yml.yml_parser]: Parsing YAML ontology file /mnt/c/Users/dea/Documents/Projects/simphony/osp-core/osp/core/ontology/docs/city.ontology.yml
INFO 2020-12-02 11:54:26,331 [osp.core.ontology.yml.yml_parser]: You can now use `from osp.core.namespaces import city`.
INFO 2020-12-02 11:54:26,333 [osp.core.ontology.parser]: Loaded 403 ontology triples in total
INFO 2020-12-02 11:54:26,374 [osp.core.ontology.installation]: Installation successful

[2]:

from osp.core.namespaces import city

The pretty_print function is part of our utilities module and is a convinient way to output the tree-like structure of a CUDS object.

[3]:

from osp.core.utils import pretty_print

The getpass function is used to retrieve an input from an user. It prints a prompt, then reads input from the user until they press return.

[4]:

from getpass import getpass

The next statements imports the second data source session we will use in this example, namely a database, or more precisely the ORM toolkit SQLAlchemy [https://www.sqlalchemy.org/] which we will use in turn to connect to a PostgreSQL database. It will throws an error if it cannot find the SQLAlchemyWrapperSession as it needs to be installed from a separate repository. Please refer here [https://github.com/simphony/simphony-sqlalchemy] for installation instructions.

[5]:

from osp.wrappers.sqlalchemy import SqlAlchemySession

Next we import a session object, which will provide the context to a simple simulation engine we developed for demonstrational purposes. It is already included in OSP-core.

[6]:

from osp.wrappers.simdummy import SimDummySession

The following lines prompt the user to enter the information needed to create a connection to a running instance of a PostgreSQL database, where the data of our simulation will be stored. Please make sure to point to an existing and running instance of PostgreSQL. To install PostgreSQL on your machine, please refer to their documentation [https://www.postgresql.org/download/].

The information is stored in a string postgres_url, which will later be passed to the SQLAlchemyWrapperSession object to initiate a connection with the data base.

[7]:

print("Input data to connect to Postgres table!")
user = input("User: ")
pwd = getpass("Password: ")
db_name = input("Database name: ")
host = input("Host: ")
port = int(input("Port [5432]: ") or 5432)
postgres_url = 'postgres://%s:%s@%s:%s/%s' % (user, pwd, host, port, db_name)

Input data to connect to Postgres table!

In the next lines we create our small ontology-loving **EMMO town** example [https://emmc.info/emmo-info/]. Please pay a closer attention to the fourth line as there you can see the power of the add method and how with one statement one can add multiple CITIZEN CUDS objects simultaneously.

[8]:

emmo_town = city.City(name='EMMO town')

emmo_town.add(city.Citizen(name='Emanuele Ghedini'), rel=city.hasInhabitant)
emmo_town.add(city.Citizen(name='Adham Hashibon'), rel=city.hasInhabitant)
emmo_town.add(city.Citizen(name='Jesper Friis'),
 city.Citizen(name='Gerhard Goldbeck'),
 city.Citizen(name='Georg Schmitz'),
 city.Citizen(name='Anne de Baas'),
 rel=city.hasInhabitant)

emmo_town.add(city.Neighborhood(name="Ontology"))
emmo_town.add(city.Neighborhood(name="User cases"))

[8]:

<city.Neighborhood: 034f396c-8b0a-411e-873e-482935688386, CoreSession: @0x7f4ede777950>

Next we grow the Ontology neighbourhood by adding some streets to it: namely relationships and entities (puns are intended).

[9]:

ontology_uid = None
for neighbourhood in emmo_town.get(oclass=city.Neighborhood):
 if neighbourhood.name == "Ontology":
 ontology_uid = neighbourhood.uid
 neighbourhood.add(city.Street(name="Relationships"), rel=city.hasPart)
 neighbourhood.add(city.Street(name="Entities"), rel=city.hasPart)

Whenever you add a relationship to a CUDS object, OSP-core will always automatically add the inverse relationship. In our example case we can now retrieve from the “Ontology” neighbourhood onto, which town it belongs to.

[10]:

onto = emmo_town.get(ontology_uid)
print(onto.get(rel=city.isPartOf)[0].name + ' is my city!')

EMMO town is my city!

Let’s now store our small city persistently in the PostgreSQL database. Working with session objects is similar to the way one is used to work with files in Python. And when you ponder a bit about it, it makes kind of sense, as what one intends to do is store some information in a data storage.

Using Python’s with statement the connection to the database will be maintained only within the scope of the with statement. After exiting its scope the connection will be closed automatically. We advise the use of the with statement as it automatically manages opening and closing of database connections.

First we open a connection to a PostgreSQL database through our SqlAlchemyWrapperSession and assign it to the session variable. Then we assign to the wrapper variable a CITY_WRAPPER and pass it the needed context with the session=session. From there on, we treat the wrapper variable as a normal CUDS object with the only difference that its internal state is managed by the SqlAlchemyWrapperSession behind the scenes. On the last line, we see the benefits of that by simply
executing the commit command onto the session object. This will trigger a series of events, with the end result being that our EMMO town will be stored in the database.

[12]:

with SqlAlchemySession(postgres_url) as session:
 wrapper = city.CityWrapper(session=session)
 wrapper.add(emmo_town)
 session.commit()

Next we show how one can use multiple data source wrappers simultaneously. First we open a connection to the PostgreSQL database through SqlAlchemyWrapperSession as shown above and assign it to the db_session variable. Then we retrieve the information we have previously stored to it using CUDS’ get method and use the pretty_print function to output the information.

Then we open a connection to our demonstrational simulation engine through DummySimWrapperSession and assign it to the sim_session variable. As you can see opening the second simulation session is within the scope of the SqlAlchemyWrapperSession.

In the scope of DummySimSession, we initialize a CitySimWrapper, pass it the context from the sim_session and assign it to the sim_wrapper variable. The CitySimWrapper consumes a city and a person. The magic happens in the following run method, which recognise that Peter is a person and it then transforms him into a citizen of the EMMO town. This new information is then stored in the sim_emmo_town automatically within the run method. We then output the
information about Peter, who is now a citizen of EMMO town.

Finally we update our now outdated EMMO town in the database by using the update command. It checks for any inconsistencies between the EMMO town stored in the database, db_emmo_town, and the modified by our simulation engine town, sim_emmo_town. In our case it will find its new citizen Peter and it will add it to the EMMO town in the database instance of the town, db_emmo_town. This change is then in turn made persistent by calling the commit method,
which will actually store the information the database.

[12]:

with SqlAlchemySession(postgres_url) as db_session:
 db_wrapper = city.CityWrapper(session=db_session)
 db_emmo_town = db_wrapper.get(emmo_town.uid)
 print("The database contains the following information about the city:")
 pretty_print(db_emmo_town)

 # Working with a Simulation wrapper
 with SimDummySession() as sim_session:
 sim_wrapper = city.CitySimWrapper(numSteps=1,
 session=sim_session)
 new_inhabitant = city.Person(age=31, name="Peter")
 sim_emmo_town, _ = sim_wrapper.add(db_emmo_town, new_inhabitant)
 sim_session.run()
 print("The city has a new inhabitant:")
 pretty_print(sim_emmo_town.get(new_inhabitant.uid))

 # update database
 db_wrapper.update(sim_emmo_town)
 db_session.commit()

The database contains the following information about the city:
- Cuds object named <EMMO town>:
 uuid: 96a2f49c-8009-456a-ad69-1cb1dea7f128
 type: city.City
 superclasses: city.City, city.GeographicalPlace, city.PopulatedPlace, cuba.Entity
 values: coordinates: [0 0]
 description:
 To Be Determined

 |_Relationship city.hasInhabitant:
 | - city.Citizen cuds object named <Emanuele Ghedini>:
 | . uuid: 08e05374-0187-4114-a114-085431aeebde
 | . age: 25
 | - city.Citizen cuds object named <Adham Hashibon>:
 | . uuid: a084c4ba-c054-4afd-b194-b4e983743706
 | . age: 25
 | - city.Citizen cuds object named <Jesper Friis>:
 | . uuid: 209926bc-6bcd-466c-a86a-807780e4789c
 | . age: 25
 | - city.Citizen cuds object named <Gerhard Goldbeck>:
 | . uuid: 0a0a8488-7400-4f4e-9e44-dbf56782cd3c
 | . age: 25
 | - city.Citizen cuds object named <Georg Schmitz>:
 | . uuid: cdfe72ec-fc15-4a14-a516-88b576bf0a27
 | . age: 25
 | - city.Citizen cuds object named <Anne de Baas>:
 | uuid: 4ec1b1af-341f-4aa5-845d-fb3f9c502c9c
 | age: 25
 |_Relationship city.hasPart:
 - city.Neighborhood cuds object named <Ontology>:
 . uuid: e1632cf5-24e3-4afb-b72b-757ef62d5bef
 . coordinates: [0 0]
 . |_Relationship city.hasPart:
 . - city.Street cuds object named <Relationships>:
 . . uuid: 19a6a5a4-c22c-4be7-98c4-c69b3ee613d2
 . . coordinates: [0 0]
 . - city.Street cuds object named <Entities>:
 . uuid: 681f7441-e711-4375-ab70-074234206faa
 . coordinates: [0 0]
 - city.Neighborhood cuds object named <User cases>:
 uuid: 574e4a68-92c8-4b0e-b41f-e0341b42b00b
 coordinates: [0 0]
The city has a new inhabitant:
- Cuds object named <Peter>:
 uuid: 7a263d53-9c4d-47ac-bb31-fa54d7920bcd
 type: city.Citizen
 superclasses: city.Citizen, city.LivingBeing, city.Person, cuba.Entity
 values: age: 32
 description:
 To Be Determined

Finally to ensure our database has successfully interpreted our addition to Emmo town, we check its contents and print them using pretty_print.

[13]:

with SqlAlchemySession(postgres_url) as db_session:
 db_wrapper = city.CityWrapper(session=db_session)
 db_emmo_town = db_wrapper.get(emmo_town.uid)
 print("The database contains the following information about the city:")
 pretty_print(db_emmo_town)

The database contains the following information about the city:
- Cuds object named <EMMO town>:
 uuid: 96a2f49c-8009-456a-ad69-1cb1dea7f128
 type: city.City
 superclasses: city.City, city.GeographicalPlace, city.PopulatedPlace, cuba.Entity
 values: coordinates: [0 0]
 description:
 To Be Determined

 |_Relationship city.hasInhabitant:
 | - city.Citizen cuds object named <Emanuele Ghedini>:
 | . uuid: 08e05374-0187-4114-a114-085431aeebde
 | . age: 25
 | - city.Citizen cuds object named <Adham Hashibon>:
 | . uuid: a084c4ba-c054-4afd-b194-b4e983743706
 | . age: 25
 | - city.Citizen cuds object named <Jesper Friis>:
 | . uuid: 209926bc-6bcd-466c-a86a-807780e4789c
 | . age: 25
 | - city.Citizen cuds object named <Gerhard Goldbeck>:
 | . uuid: 0a0a8488-7400-4f4e-9e44-dbf56782cd3c
 | . age: 25
 | - city.Citizen cuds object named <Georg Schmitz>:
 | . uuid: cdfe72ec-fc15-4a14-a516-88b576bf0a27
 | . age: 25
 | - city.Citizen cuds object named <Anne de Baas>:
 | . uuid: 4ec1b1af-341f-4aa5-845d-fb3f9c502c9c
 | . age: 25
 | - city.Citizen cuds object named <Peter>:
 | uuid: 7a263d53-9c4d-47ac-bb31-fa54d7920bcd
 | age: 32
 |_Relationship city.hasPart:
 - city.Neighborhood cuds object named <Ontology>:
 . uuid: e1632cf5-24e3-4afb-b72b-757ef62d5bef
 . coordinates: [0 0]
 . |_Relationship city.hasPart:
 . - city.Street cuds object named <Relationships>:
 . . uuid: 19a6a5a4-c22c-4be7-98c4-c69b3ee613d2
 . . coordinates: [0 0]
 . - city.Street cuds object named <Entities>:
 . uuid: 681f7441-e711-4375-ab70-074234206faa
 . coordinates: [0 0]
 - city.Neighborhood cuds object named <User cases>:
 uuid: 574e4a68-92c8-4b0e-b41f-e0341b42b00b
 coordinates: [0 0]

[]:

 Tutorial: Import and export

Tutorial: Import and export

[image: Binder] [https://mybinder.org/v2/gh/simphony/docs/v3.9.0?filepath=docs%2Fsource%2Fjupyter%2Fimport_export.ipynb]

In this tutorial we will be covering the import and export capabilities of OSP-core. The utility functions that provide these functionalities are import_cuds and export_cuds, respectively.

Tip

The full API specifications of the import and export functions can be found in the utilities API reference page.

For our running example, we’ll be using the city ontology that was already introduces in the cuds API tutorial. First, make sure the city ontology is installed. If not, run the following command:

[1]:

!pico install city

INFO 2021-05-31 10:55:51,839 [osp.core.ontology.installation]: Will install the following namespaces: ['city']
INFO 2021-05-31 10:55:51,879 [osp.core.ontology.yml.yml_parser]: Parsing YAML ontology file c:\users\yoav\anaconda3\envs\osp\lib\site-packages\osp\core\ontology\docs\city.ontology.yml
INFO 2021-05-31 10:55:51,995 [osp.core.ontology.yml.yml_parser]: You can now use `from osp.core.namespaces import city`.
INFO 2021-05-31 10:55:51,996 [osp.core.ontology.parser]: Loaded 7396 ontology triples in total
INFO 2021-05-31 10:55:52,437 [osp.core.ontology.installation]: Installation successful

Next we create a few CUDS objects:

[2]:

from osp.core.namespaces import city

c = city.City(name="Freiburg", coordinates=[47, 7])
p1 = city.Citizen(name="Peter")
p2 = city.Citizen(name="Anne")
c.add(p1, rel=city.hasInhabitant)
c.add(p2, rel=city.hasInhabitant)

[2]:

<city.Citizen: 98f8ac8c-713d-4406-bc36-e0152f9e2ea3, CoreSession: @0x221b0a05250>

Now we can use the export_cuds methods to export the data into a file:

[3]:

from osp.core.utils import export_cuds

export_cuds(c, file='./data.ttl', format='turtle')

This will create the file data.ttl with the following content:

[4]:

from sys import platform

if platform == 'win32':
 !more data.ttl
else:
 !cat data.ttl

@prefix city: <http://www.osp-core.com/city#> .
@prefix cuba: <http://www.osp-core.com/cuba#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

cuba:_serialization rdf:first "47398674-720b-4765-9047-b5351ed175c0" .

<http://www.osp-core.com/cuds#8a90e2b3-7cca-4103-9eba-aab55e5903b1> a city:Citizen ;
 city:INVERSE_OF_hasInhabitant <http://www.osp-core.com/cuds#47398674-720b-4765-9047-b5351ed175c0> ;
 city:age 25 ;
 city:name "Peter" .

<http://www.osp-core.com/cuds#98f8ac8c-713d-4406-bc36-e0152f9e2ea3> a city:Citizen ;
 city:INVERSE_OF_hasInhabitant <http://www.osp-core.com/cuds#47398674-720b-4765-9047-b5351ed175c0> ;
 city:age 25 ;
 city:name "Anne" .

<http://www.osp-core.com/cuds#47398674-720b-4765-9047-b5351ed175c0> a city:City ;
 city:coordinates "[47, 7]"^^<http://www.osp-core.com/cuba#_datatypes/VECTOR-INT-2> ;
 city:hasInhabitant <http://www.osp-core.com/cuds#8a90e2b3-7cca-4103-9eba-aab55e5903b1>,
 <http://www.osp-core.com/cuds#98f8ac8c-713d-4406-bc36-e0152f9e2ea3> ;
 city:name "Freiburg" .

You can change the format by entering a different value for the parameter format. The supported formats are “xml”, “n3”, “turtle”, “nt”, “pretty-xml”, “trix”, “trig” and “nquads”.

To import data, we can use the import method. Let’s assume we wish to import data into an SQLite session. The following code will help us to achieve our aim:

[5]:

from osp.wrappers.sqlite import SqliteSession
from osp.core.utils import import_cuds

with SqliteSession("test.db") as session:
 wrapper = city.CityWrapper(session=session)
 c = import_cuds('./data.ttl')
 wrapper.add(c)
 session.commit()

Now we can verify the data was indeed imported:

[6]:

from osp.core.utils import pretty_print

with SqliteSession("test.db") as session:
 wrapper = city.CityWrapper(session=session)
 pretty_print(wrapper)

- Cuds object:
 uid: 03015cb9-f88c-4ab1-9df9-bb52743b99de
 type: city.CityWrapper
 superclasses: city.CityWrapper, cuba.Entity, cuba.Wrapper
 description:
 To Be Determined

 |_Relationship city.hasPart:
 - city.City cuds object named <Freiburg>:
 . uid: 72595bc4-1b68-46a3-97e9-8f3de2650f2c
 . coordinates: [47 7]
 . |_Relationship city.hasInhabitant:
 . - city.Citizen cuds object named <Anne>:
 . . uid: 92a00459-0927-438c-a305-a26512ac7f03
 . . age: 25
 . - city.Citizen cuds object named <Peter>:
 . uid: 27d1e83b-4ee9-4f4f-adb5-0b01a3cc2c1b
 . age: 25
 - city.City cuds object named <Freiburg>:
 . uid: 47398674-720b-4765-9047-b5351ed175c0
 . coordinates: [47 7]
 . |_Relationship city.hasInhabitant:
 . - city.Citizen cuds object named <Anne>:
 . . uid: 98f8ac8c-713d-4406-bc36-e0152f9e2ea3
 . . age: 25
 . - city.Citizen cuds object named <Peter>:
 . uid: 8a90e2b3-7cca-4103-9eba-aab55e5903b1
 . age: 25
 - city.City cuds object named <Freiburg>:
 uid: d886f8ce-1326-40f5-a98b-c4c893b8c085
 coordinates: [47 7]
 |_Relationship city.hasInhabitant:
 - city.Citizen cuds object named <Anne>:
 . uid: 2b5d0a3f-81a5-4746-aab9-40adcb65e71f
 . age: 25
 - city.Citizen cuds object named <Peter>:
 uid: 766b320a-7e9a-43ec-a696-96b4f9ee494d
 age: 25

Notes

	The format is automatically inferred from the file extension. To specify it explicitly, you can add the format parameter, like so: import_cuds('./data.ttl', format='turtle').

	The session parameter is optional and inferred automatically from the context that created by the with statement (see the tutorial on multiple wrappers for more information). You can specify the session explicitly like so: import_cuds('./data.ttl', session=session).

 Tutorial: Simlammps wrapper

Tutorial: Simlammps wrapper

In this tutorial we will go through a simple example of how to use the wrapper for the LAMMPS simulation engine. You can find the wrapper here [https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/simlammps].

Background

A wrapper for LAMMPS has been present in SimPhoNy since its initial version, and it is the first simulation engine we supported in version 3.

This wrapper is a good example of the 3-layered-design where the Syntactic layer is a third party library. In this case we use PyLammps, a Python binding for LAMMPS created and maintained by the LAMMPS developers.

Let’s get hands on

Installation

We will start by quickly going through the installation of this tool. Like we explain in the wrapper development section, there are two options:

	Using Docker: run ./docker_install.sh.

	Local installation: remember that you must have a compatible version of OSP-core installed.

Install the ontology via pico install simlammps.ontology.yml.

Run ./install_engine.sh.

	Note that you will be asked for a superuser password to install required libraries for the installation (make, libjpeg, libpng…)

	Currently we support Ubuntu and centOS.

Install the wrapper by running python setup.py install.

That should be all needed to use simlammps!

Simple example

This is an adaptation of simlammps/examples/small.py. As usual, we start importing the necessary components:

[1]:

from osp.core import simlammps_ontology
from osp.wrappers.simlammps import SimlammpsSession

We create the wrapper instance. All wrappers are created by defining their own session class.

There is no need to specify a syntactic layer (PyLammps). The session will generate one.

[2]:

simlammps_session = SimlammpsSession()
simlammps = simlammps_ontology.SimlammpsWrapper(session=simlammps_session)

LAMMPS output is captured by PyLammps wrapper

Next, we can define some necessary settings for the run:

[3]:

Define the simulation box
box = simlammps_ontology.SimulationBox()
face_x = simlammps_ontology.FaceX(vector=(10, 0, 0))
face_x.add(simlammps_ontology.Periodic())
face_y = simlammps_ontology.FaceY(vector=(0, 10, 0))
face_y.add(simlammps_ontology.Periodic())
face_z = simlammps_ontology.FaceZ(vector=(0, 0, 10))
face_z.add(simlammps_ontology.Periodic())
box.add(face_x, face_y, face_z)
simlammps.add(box)

molecular dynamics model
md_nve = simlammps_ontology.MolecularDynamics()
simlammps.add(md_nve)

solver component:
sp = simlammps_ontology.SolverParameter()

integration time:
steps = 100
itime = simlammps_ontology.IntegrationTime(steps=steps)

sp.add(itime)
verlet = simlammps_ontology.Verlet()

sp.add(verlet)
simlammps.add(sp)

Mass and material for the atoms
mass = simlammps_ontology.Mass(value=0.2)
material = simlammps_ontology.Material()

material.add(mass)
simlammps.add(material)

Interatomic force as material relation
lj = simlammps_ontology.LennardJones_6_12(cutoff_distance=2.5,
 energy_well_depth=1.0,
 van_der_waals_radius=1.0)
lj.add(material)
simlammps.add(lj)

[3]:

<SIMLAMMPS_ONTOLOGY.LENNARD_JONES_6_12: 9c9c1672-a9f2-4eba-85a4-060b56addf2a, SimlammpsSession: @0x7fac60dc7a90>

Now we add some atoms:

[4]:

particle = simlammps_ontology.Atom()
particle.add(material,
 simlammps_ontology.Position(vector=(1, 6, 3)),
 simlammps_ontology.Velocity(vector=(1, 0, 0)))
simlammps.add(particle)

particle = simlammps_ontology.Atom()
particle.add(material,
 simlammps_ontology.Position(vector=(2, 1, 4)),
 simlammps_ontology.Velocity(vector=(2, 0, 2)))
simlammps.add(particle)

particle = simlammps_ontology.Atom()
The velocity is not required (the position is)
particle.add(material,
 simlammps_ontology.Position(vector=(7, 3, 0)))
simlammps.add(particle)

[4]:

<SIMLAMMPS_ONTOLOGY.ATOM: db96a76f-4d70-4e19-b460-46ee286f831e, SimlammpsSession: @0x7fac60dc7a90>

To run the simulation, we call the run() method of the session. The run method sends the information to the engine, and tells it to run the number of steps defined in the Integration Time entity (100):

[5]:

simlammps.session.run()

Since we will run the simulation a couple of times, we can define a simple function for showing the position and velocities of the atoms:

[6]:

def print_info():
 for atom in simlammps.iter(oclass=simlammps_ontology.Atom):
 # Remember that Cuds.get(oclass) returns a list
 # We now all atoms have one (and only one) position
 position = atom.get(oclass=simlammps_ontology.Position)[0]
 # But the atoms might not have a velocity
 velocity = atom.get(oclass=simlammps_ontology.Velocity)
 print("Atom " + str(atom.uid) + ":")
 print(" - Position: " + str(position.vector))
 if velocity:
 print(" - Velocity: " + str(velocity[0].vector))

Now we can easily print the results of the run:

[7]:

print_info()

Atom fd4199d4-4d1a-425c-8010-60efca65bd1c:
 - Position: [1.5 6. 3.]
 - Velocity: [1. 0. 0.]
Atom f9a32d14-b638-4796-9407-4b1ae6be43cb:
 - Position: [3. 1. 5.]
 - Velocity: [2. 0. 2.]
Atom db96a76f-4d70-4e19-b460-46ee286f831e:
 - Position: [7. 3. 0.]

Finally, let’s change the velocities and run again, but now for 200 steps:

[8]:

from random import randint

for atom in simlammps.iter(oclass=simlammps_ontology.Atom):
 # But the atoms might not have a velocity
 velocity = atom.get(oclass=simlammps_ontology.Velocity)
 if velocity:
 velocity[0].vector = (randint(-3, 3), randint(-3, 3), randint(-3, 3))
 else:
 atom.add(simlammps_ontology.Velocity(vector = (randint(-3, 3), randint(-3, 3), randint(-3, 3))))

solver_parameter = simlammps.get(oclass=simlammps_ontology.SolverParameter)[0]
integration_time = solver_parameter.get(oclass=simlammps_ontology.IntegrationTime)[0]
integration_time.steps = 200

simlammps.session.run()
print_info()

Atom fd4199d4-4d1a-425c-8010-60efca65bd1c:
 - Position: [0.5 4. 6.]
 - Velocity: [-1. -2. 3.]
Atom f9a32d14-b638-4796-9407-4b1ae6be43cb:
 - Position: [6. 8. 8.]
 - Velocity: [3. -3. 3.]
Atom db96a76f-4d70-4e19-b460-46ee286f831e:
 - Position: [9. 4. 0.]
 - Velocity: [2. 1. 0.]

[]:

 Tutorial: Quantum ESPRESSO wrapper

Tutorial: Quantum ESPRESSO wrapper

In this tutorial we will go through a simple example of how to use the wrapper for the Quantum Espresso simulation engine. You can find the wrapper here [https://github.com/simphony/quantum-espresso-wrapper].

Background

This is an example of a slightly different design based upon the input-output functionality of certain simulation engines such as Quantum Espresso and Gromacs.

Let’s get hands-on

Installation

To run the local installation of Quantum Espresso, simply run ./install_engine.sh. This should check for the prerequisites and compile the code for Quantum Espresso for you.

If the script runs into an error finding openmpi-bin or something like that, try running apt-get update and try again. Once the installation has completed, try running pw.x to see if the installation has succeeded. If this does not work, then try adding export PATH=$PATH:/home/username/qe-6.1/bin/ at the end of .bashrc located at your home folder.

Once you have verified that pw.x works, install the ontology via pico install ontology.simlammps.yml, and make sure to run python3 setup.py located in the root of the quantum espresso wrapper folder.

That should be all needed to use Quantum Espresso!

Simple example

This is an adaptation of quantum-espresso-wrapper/examples/Simple.py. As usual, we need to import the necessary components:

[1]:

import numpy as np

from osp.core.namespaces import QE
from osp.core.utils import pretty_print
from osp.wrappers.quantumespresso.qe_session import qeSession

Next, we create simulation and its K points, which determine at what points it samples the cell

[2]:

sim = QE.Simulation()
k = QE.K_POINTS(vector = (7, 7, 7), unit = "")

Next, we create a cell, the element Silicon, a pseudopotential, an atom and the cell parameters. Note that the pseudopotential files should ALWAYS be located inside of a folder named $PSEUDO_DIR inside of wherever you are running the simulation.

[3]:

SiCell = QE.Cell()
Si = QE.Element(name = "Si")
SiPseudo = QE.PSEUDOPOTENTIAL(name = "Si.pbe-n-kjpaw_psl.1.0.0.UPF")
Si1 = QE.Atom()
SiParams = QE.CellParams()
celldm1 = QE.Celldm1(value = 5.43070, unit = "au")

Next, we connect these all to each other using the add method.

[4]:

Si.add(SiPseudo, Si1)
Si.add(QE.Mass(value = 28.085, unit = "amu"))
SiCell.add(Si1, SiParams)
Si1.add(QE.Position(vector = (0, 0, 0), unit = ""))
SiCell.add(celldm1)

[4]:

<qe.Celldm1: be8f3915-3eb7-4221-a441-345eda51832b, CoreSession: @0x7feae9717370>

We specify the cell parameters:

[5]:

SiParams.add(QE.CellParameterX(vector = (0.5, 0.5, 0), unit = ""),
 QE.CellParameterY(vector = (0.5, 0, 0.5), unit = ""),
 QE.CellParameterZ(vector = (0, 0.5, 0.5), unit = ""))

[5]:

[<qe.CellParameterX: 0ebdeed9-1d8a-498d-94c9-bafccb05d652, CoreSession: @0x7feae9717370>,
 <qe.CellParameterY: fea8789c-8c07-49f9-9971-8d42bdd6ba3f, CoreSession: @0x7feae9717370>,
 <qe.CellParameterZ: 1474d106-4204-428d-827b-2d5e2cb4af51, CoreSession: @0x7feae9717370>]

And then we add everything created so far to the simulation:

[6]:

sim.add(SiCell)
sim.add(Si)
sim.add(k)

[6]:

<qe.K_POINTS: 6847a5f0-8d20-4f73-9eb3-043e78053182, CoreSession: @0x7feae9717370>

While we’re add it, let’s add some variables to the simulation which we can check to see if they have been updated. They will not be taken into account when simulating, so they’re there for control purposes.

[7]:

sim.add(QE.Pressure(value = 100, unit = "kbar"))
sim.add(QE.StressTensor(tensor2 = np.zeros((3, 3)), unit = "kbar"))

[7]:

<qe.StressTensor: 2f302f8b-89b8-4d7a-a2a7-4f6e19737f00, CoreSession: @0x7feae9717370>

Let’s check out what this simulation looks like now with the pretty_print function:

[8]:

pretty_print(sim)

- Cuds object:
 uuid: 903145ad-50e3-46fc-9d28-1aa1ec364e8a
 type: qe.Simulation
 superclasses: cuba.Class, cuba.Entity, qe.Simulation
 description:
 All components of the simulation that are needed to run the model

 |_Relationship qe.HAS_PART:
 - qe.Cell cuds object:
 . uuid: 67a0fcb4-4977-49df-9bcb-13bca17b2763
 . |_Relationship qe.HAS_PART:
 . - qe.Atom cuds object:
 . . uuid: 1bad1c25-609a-4bc0-8c65-3c0167cfdbe2
 . . |_Relationship qe.HAS_PART:
 . . - qe.Position cuds object:
 . . uuid: c70afbb3-0012-488d-8059-b44d775c6b23
 . . vector: [0. 0. 0.]
 . . unit:
 . - qe.CellParams cuds object:
 . . uuid: f444899a-e850-4ab2-b79e-c91026523eb3
 . . |_Relationship qe.HAS_PART:
 . . - qe.CellParameterX cuds object:
 . . . uuid: 0ebdeed9-1d8a-498d-94c9-bafccb05d652
 . . . vector: [0.5 0.5 0.]
 . . . unit:
 . . - qe.CellParameterY cuds object:
 . . . uuid: fea8789c-8c07-49f9-9971-8d42bdd6ba3f
 . . . vector: [0.5 0. 0.5]
 . . . unit:
 . . - qe.CellParameterZ cuds object:
 . . uuid: 1474d106-4204-428d-827b-2d5e2cb4af51
 . . vector: [0. 0.5 0.5]
 . . unit:
 . - qe.Celldm1 cuds object:
 . uuid: be8f3915-3eb7-4221-a441-345eda51832b
 . unit: au
 . value: 5.4307
 - qe.Element cuds object named <Si>:
 . uuid: 8628ceb7-1c02-4014-95a4-d9450aab4753
 . |_Relationship qe.HAS_PART:
 . - qe.Atom cuds object:
 . . uuid: 1bad1c25-609a-4bc0-8c65-3c0167cfdbe2
 . . (already printed)
 . - qe.Mass cuds object:
 . . uuid: 1aee515a-4e12-40e6-bbd6-23bf5c95fe84
 . . unit: amu
 . . value: 28.085
 . - qe.PSEUDOPOTENTIAL cuds object named <Si.pbe-n-kjpaw_psl.1.0.0.UPF>:
 . uuid: cb27bcb9-27c6-48a9-8f1e-8977b16567c5
 - qe.K_POINTS cuds object:
 . uuid: 6847a5f0-8d20-4f73-9eb3-043e78053182
 . vector: [7. 7. 7.]
 . unit:
 - qe.Pressure cuds object:
 . uuid: d281d93d-fd10-41fd-868c-0cda3b510431
 . unit: kbar
 . value: 100.0
 - qe.StressTensor cuds object:
 uuid: 2f302f8b-89b8-4d7a-a2a7-4f6e19737f00
 unit: kbar
 tensor2: [[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]

Now, it’s time to get the simulation running:

[12]:

session = qeSession()
quantum_espresso_wrapper = QE.QEWrapper(session = session)
quantum_espresso_wrapper.add(sim)
print("Running calculation...")

quantum_espresso_wrapper.session._run(simulation = sim, prefix = "si", command_type = "pw.x", calculation_type = "scf", root = "", CONTROL = {'pseudo_dir': "'.'"})

Running calculation...
/mnt/c/iwm/docs/si.pwscf.in
pw.x -i /mnt/c/iwm/docs/si.pwscf.in > /mnt/c/iwm/docs/si.pwscf.out

Now let’s check the results of our calculation:

[10]:

pretty_print(sim)

- Cuds object:
 uuid: 903145ad-50e3-46fc-9d28-1aa1ec364e8a
 type: qe.Simulation
 superclasses: cuba.Class, cuba.Entity, qe.Simulation
 description:
 All components of the simulation that are needed to run the model

 |_Relationship qe.HAS_PART:
 - qe.Cell cuds object:
 . uuid: 67a0fcb4-4977-49df-9bcb-13bca17b2763
 . |_Relationship qe.HAS_PART:
 . - qe.Atom cuds object:
 . . uuid: 1bad1c25-609a-4bc0-8c65-3c0167cfdbe2
 . . |_Relationship qe.HAS_PART:
 . . - qe.Position cuds object:
 . . uuid: c70afbb3-0012-488d-8059-b44d775c6b23
 . . vector: [0. 0. 0.]
 . . unit:
 . - qe.CellParams cuds object:
 . . uuid: f444899a-e850-4ab2-b79e-c91026523eb3
 . . |_Relationship qe.HAS_PART:
 . . - qe.CellParameterX cuds object:
 . . . uuid: 0ebdeed9-1d8a-498d-94c9-bafccb05d652
 . . . vector: [0.5 0.5 0.]
 . . . unit:
 . . - qe.CellParameterY cuds object:
 . . . uuid: fea8789c-8c07-49f9-9971-8d42bdd6ba3f
 . . . vector: [0.5 0. 0.5]
 . . . unit:
 . . - qe.CellParameterZ cuds object:
 . . uuid: 1474d106-4204-428d-827b-2d5e2cb4af51
 . . vector: [0. 0.5 0.5]
 . . unit:
 . - qe.Celldm1 cuds object:
 . uuid: be8f3915-3eb7-4221-a441-345eda51832b
 . unit: au
 . value: 5.4307
 - qe.Element cuds object named <Si>:
 . uuid: 8628ceb7-1c02-4014-95a4-d9450aab4753
 . |_Relationship qe.HAS_PART:
 . - qe.Atom cuds object:
 . . uuid: 1bad1c25-609a-4bc0-8c65-3c0167cfdbe2
 . . (already printed)
 . - qe.Mass cuds object:
 . . uuid: 1aee515a-4e12-40e6-bbd6-23bf5c95fe84
 . . unit: amu
 . . value: 28.085
 . - qe.PSEUDOPOTENTIAL cuds object named <Si.pbe-n-kjpaw_psl.1.0.0.UPF>:
 . uuid: cb27bcb9-27c6-48a9-8f1e-8977b16567c5
 - qe.K_POINTS cuds object:
 . uuid: 6847a5f0-8d20-4f73-9eb3-043e78053182
 . vector: [7. 7. 7.]
 . unit:
 - qe.Pressure cuds object:
 . uuid: d281d93d-fd10-41fd-868c-0cda3b510431
 . unit: kbar
 . value: 100.0
 - qe.PwOut cuds object:
 . uuid: 15c6637e-9124-44dd-a1d3-f225203c1bfc
 . path: /mnt/c/iwm/docs/si.pwscf.out
 - qe.StressTensor cuds object:
 uuid: 2f302f8b-89b8-4d7a-a2a7-4f6e19737f00
 unit: kbar
 tensor2: [[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]

As you can see, the original part of the cuds tree is still there, with everything mostly the same. The new parts are:

	The qe.PwOut cuds object. This is the output file of the simulation, in case there is something that the wrapper does not parse but that you would still like to see.

	The qe.TotalEnergy cuds object. This was parsed from the qe.PwOut file itself.

	The qe.Force cuds object. This represents the force exerted on the atom(s).

The updated parts are:

	The qe.Pressure cuds object, having changed in value from 100 kbar to 5723.64 kbar.

	The qe.StressTensor cuds object, which is no longer zero.

Let’s see if we can do better and calculate some bands structures:

[21]:

quantum_espresso_wrapper.session._run(prefix = "si", command_type = "pw.x", calculation_type = "bands")
quantum_espresso_wrapper.session._run(prefix = "si", command_type = "bands.x", calculation_type = "")

TypeError Traceback (most recent call last)
<ipython-input-21-51324d6941c1> in <module>
----> 1 quantum_espresso_wrapper.session._run(prefix = "si", command_type = "pw.x", calculation_type = "bands")
 2 quantum_espresso_wrapper.session._run(prefix = "si", command_type = "bands.x", calculation_type = "")

TypeError: _run() missing 1 required positional argument: 'simulation'

Although the cuds structure won’t have changed much by this, the data is there in the folder.

Now let’s try to relax this cell. While it isn’t a real cell, we can still perform the calculations to relax it to know what the movement of the atoms would be like if it were a real cell (warning, perform vc-relax type calculations with caution. These examples are designed to be lightweight and non-indicative of real-world applications).

[22]:

quantum_espresso_wrapper.session._run(simulation = sim, prefix = "si", command_type = "pw.x", calculation_type = "relax", IONS = {'ion_dynamics': "'bfgs'"})

TypeError Traceback (most recent call last)
<ipython-input-22-8a4fa9c53f25> in <module>
----> 1 quantum_espresso_wrapper.session._run(prefix = "si", command_type = "pw.x", calculation_type = "relax", IONS = {'ion_dynamics': "'bfgs'"})

TypeError: _run() missing 1 required positional argument: 'simulation'

[23]:

pretty_print(sim)

- Cuds object:
 uuid: 90361daa-6905-4566-979e-11b3b0dd4e85
 type: qe.Simulation
 superclasses: cuba.Class, cuba.Entity, qe.Simulation
 description:
 All components of the simulation that are needed to run the model

 |_Relationship qe.HAS_PART:
 - qe.Cell cuds object:
 . uuid: f7548873-28e9-4d76-86da-6fddb687d29e
 . |_Relationship qe.HAS_PART:
 . - qe.Atom cuds object:
 . . uuid: 53114a1f-ebbb-4e4b-a115-080925d9eaa8
 . . |_Relationship qe.HAS_PART:
 . . - qe.Position cuds object:
 . . uuid: 48d4483b-7c72-4454-8041-581dc73fd216
 . . vector: [0. 0. 0.]
 . . unit:
 . - qe.CellParams cuds object:
 . . uuid: 9d61e990-2509-474b-935e-618ca11bb40d
 . . |_Relationship qe.HAS_PART:
 . . - qe.CellParameterX cuds object:
 . . . uuid: f2655054-efa7-4b39-9f0a-cf6453be68ec
 . . . vector: [0.5 0.5 0.]
 . . . unit:
 . . - qe.CellParameterY cuds object:
 . . . uuid: 55647575-ea8f-4ef7-aee8-2a3333a4ec71
 . . . vector: [0.5 0. 0.5]
 . . . unit:
 . . - qe.CellParameterZ cuds object:
 . . uuid: 92be9c63-ee80-46d9-8853-ccb562e94a5b
 . . vector: [0. 0.5 0.5]
 . . unit:
 . - qe.Celldm1 cuds object:
 . . uuid: db776c65-9d2e-448e-bc55-5fe0f9c7ee75
 . . unit: au
 . . value: 5.4307
 . - qe.Element cuds object named <Si>:
 . uuid: 14dacecb-023c-4ace-9e83-35b0ecaa1032
 . |_Relationship qe.HAS_PART:
 . - qe.Atom cuds object:
 . . uuid: 53114a1f-ebbb-4e4b-a115-080925d9eaa8
 . . (already printed)
 . - qe.Atom cuds object:
 . . uuid: c2094a19-8769-4298-a50a-be1f8befe5bf
 . . |_Relationship qe.HAS_PART:
 . . - qe.Position cuds object:
 . . uuid: 4087ce47-16f0-4449-b8c4-4577e6d265e2
 . . vector: [0.25 0.25 0.26]
 . . unit:
 . - qe.Mass cuds object:
 . . uuid: 5d57a768-d315-4f91-84a8-fcfad9aae382
 . . unit: amu
 . . value: 28.085
 . - qe.PSEUDOPOTENTIAL cuds object named <Si.pbe-n-kjpaw_psl.1.0.0.UPF>:
 . uuid: ab064983-5cc9-418e-a9e7-3357c04388f5
 - qe.Element cuds object named <Si>:
 . uuid: 14dacecb-023c-4ace-9e83-35b0ecaa1032
 . (already printed)
 - qe.K_POINTS cuds object:
 . uuid: 38385f3b-128c-491f-91f4-44de15055d56
 . vector: [7. 7. 7.]
 . unit:
 - qe.Pressure cuds object:
 . uuid: 57f47fa8-4588-488f-8c89-fa8a0f37f567
 . unit: kbar
 . value: 100.0
 - qe.Pressure cuds object:
 . uuid: beac6977-01cf-4b4d-b89b-1b4d4eecf5c0
 . unit: kbar
 . value: 100.0
 - qe.PwOut cuds object:
 . uuid: 7890c86c-9f6f-42b3-a02c-cd57f5307c75
 . path: si.pwscf.out
 - qe.PwOut cuds object:
 . uuid: 5c7e31f9-6e55-4ddf-af62-5a3e58811464
 . path: si.pwscf.out
 - qe.StressTensor cuds object:
 . uuid: 16b33d51-0f6d-4451-a919-da494a13082f
 . unit: kbar
 . tensor2: [[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
 - qe.StressTensor cuds object:
 uuid: 590ad64e-d110-4711-90c6-0986bb53dafc
 unit: kbar
 tensor2: [[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]

In this example, the position hasn’t changed. So let’s spice things up a little bit and add another atom, and then relax:

[24]:

Si2 = QE.Atom()
Si2.add(QE.Position(vector = (0.25, 0.25, 0.26), unit = ""))
SiCell.add(Si)
Si.add(Si2)
pretty_print(sim)

ValueError Traceback (most recent call last)
<ipython-input-24-6957eba14ddb> in <module>
 1 Si2 = QE.Atom()
 2 Si2.add(QE.Position(vector = (0.25, 0.25, 0.26), unit = ""))
----> 3 SiCell.add(Si)
 4 Si.add(Si2)
 5 pretty_print(sim)

/mnt/c/IWM/osp-core-3.4.0-dev/osp/core/cuds.py in add(self, rel, *args)
 161 if rel in self._neighbors and arg.uid in self._neighbors[rel]:
 162 message = '{!r} is already in the container'
--> 163 raise ValueError(message.format(arg))
 164 if self.session != arg.session:
 165 arg = self._recursive_store(arg, next(old_objects))

ValueError: <qe.Element: 14dacecb-023c-4ace-9e83-35b0ecaa1032, CoreSession: @0x7f3d2d38bfa0> is already in the container

[25]:

quantum_espresso_wrapper.session._run(simulation = sim, prefix = "si", command_type = "pw.x", calculation_type = "relax", IONS = {'ion_dynamics': "'bfgs'"})
pretty_print(sim)

TypeError Traceback (most recent call last)
<ipython-input-25-8eda2c089407> in <module>
----> 1 quantum_espresso_wrapper.session._run(prefix = "si", command_type = "pw.x", calculation_type = "relax", IONS = {'ion_dynamics': "'bfgs'"})
 2 pretty_print(sim)

TypeError: _run() missing 1 required positional argument: 'simulation'

 Introduction on ontologies

Introduction on ontologies

What is an ontology?

An ontology defines a set of representational primitives with which to
model a domain of knowledge or discourse. The representational
primitives are typically classes (or sets), attributes (or properties),
and relationships (or relations among class members). The definitions of
the representational primitives include information about their meaning
and constraints on their logically consistent application. (Source:
http://tomgruber.org/writing/ontology-definition-2007.htm)

An example: the City ontology

OSP-core ships with one simple example ontology, called city.
You can use it to play around and get familiar with OSP-core.
We will also use it a lot in this documentation as an example.

The city ontology provides the concepts to describe people and
buildings in a city. In this graph we show the different entities in the
ontology. We used Ontology2Dot for that:

[image: ontology2dot sample image]

To use the city ontology you have to install it using the tool Pico:

pico install city

Take a look at our examples to see how you can build your own city!

 How to work with ontologies

How to work with ontologies

OSP-core supports ontologies in the following formats:

	OWL ontologies

	RDFS vocabularies (limited support)

	OSP-core YAML ontology format

OWL ontologies and RDFS vocabularies

To install OWL ontologies or RDFS vocabularies in OSP-core, you have to
create a configuration yaml file similar to the following one:

identifier: emmo
ontology_file: https://raw.githubusercontent.com/emmo-repo/EMMO/master/emmo-inferred.owl
format: turtle
reference_by_label: True
namespaces:
 mereotopology: http://emmo.info/emmo/top/mereotopology
 physical: http://emmo.info/emmo/top/physical
 top: http://emmo.info/emmo/top
 semiotics: http://emmo.info/emmo/top/semiotics
 perceptual: http://emmo.info/emmo/middle/perceptual
 reductionistic: http://emmo.info/emmo/middle/reductionistic
 holistic: http://emmo.info/emmo/middle/holistic
 physicalistic: http://emmo.info/emmo/middle/physicalistic
 math: http://emmo.info/emmo/middle/math
 properties: http://emmo.info/emmo/middle/properties
 materials: http://emmo.info/emmo/middle/materials
 metrology: http://emmo.info/emmo/middle/metrology
 models: http://emmo.info/emmo/middle/models
 manufacturing: http://emmo.info/emmo/middle/manufacturing
 isq: http://emmo.info/emmo/middle/isq
 siunits: http://emmo.info/emmo/middle/siunits
active_relationships:
 - http://emmo.info/emmo/top/mereotopology#EMMO_8c898653_1118_4682_9bbf_6cc334d16a99
 - http://emmo.info/emmo/top/semiotics#EMMO_60577dea_9019_4537_ac41_80b0fb563d41
default_relationship: http://emmo.info/emmo/top/mereotopology#EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f

Keywords

identifier: Can be any alphanumerical string. It is the name of the package
that contains multiple namespaces. Will be used for uninstallation: pico uninstall emmo.
(In YAML ontologies this package name or identifier is the same as the namespace name).

ontology_file: Path to the inferred owl ontology. That means you should
have executed a reasoner on your ontology, e.g. by using the Export inferred axioms
functionality of Protégé [https://protege.stanford.edu/].

format (optional): File format of the ontology file to be parsed. We
support all the
formats that
RDFLib [https://rdflib.readthedocs.io/en/stable/plugin_parsers.html] supports:
XML (xml, application/rdf+xml, default), Turtle (turtle, ttl,
text/turtle), N3 (n3,text/n3), NTriples (nt, nt11,
application/n-triples), N-Quads (nquads, application/n-quads),
TriX (trix, application/trix) and TriG (trig, application/trig).
When not provided, it will be guessed from the file extension. However, such
guess may not always be correct.

reference_by_label (default False): Whether the label should be used or the IRI suffix to reference
entity from within OSP-core. In case of EMMO it is true, because IRI suffixes are not
human friendly. In this case all labels should be unique and not contain whitespaces.
If False, use dot notation to get by IRI square brackets (__getitem__) to get by label.
The latter will return a list of all entities with the same label.

namespaces: mapping from namespace name (used to import the namespace) to iri prefix.
If IRI doesn’t end with “/” or “#”, “#” will be added.

active relationships:
List of iris of active relationships.

default relationship:
The default relationship.

Installation

Name the yaml file as you would any yaml file <name>.yml, where <name> should be replaced by a user defined name.

Then you can use pico to install the tool Pico
to install the ontology:

pico install </path/to/name.yml>

Limitations

At the moment, there are a few limitations on the supported features of OWL
ontologies and RDFS vocabularies.

OWL ontologies

Not all predicates of OWL ontologies are taken into
consideration. Among the used ones are:

	RDF.type to determine the type of the entities.

	RDFS.label to get the entities by label.

	RDFS.isDefinedBy to get a descriptions for the entities.

	RDFS.subClassOf / RDFS.subPropertyOf for subclasses.

	OWL.inverseOf for inverse relationships.

	RDFS.range to determine the datatype of DataProperties. These are the supported
datatypes:

	XSD.boolean

	XSD.integer

	XSD.float

	XSD.string

	To get the attributes of an owl class, we use

	The RDFS.domain of the DatatypeProperties, if it is a simple class.

	Restrictions on the ontology classes.

	Furthermore, all DataProperties are considered functional, see this issue [https://github.com/simphony/osp-core/issues/416].

	Restrictions and compositions are also supported. They can be consulted
using the axioms attribute of ontology classes.

No reasoner is included. We plan to include a reasoner in the
future.

We try to extend this list over time and support more of the
OWL DL standard.

RDFS vocabularies

With respect to RDFS vocabularies, the RDFS.Class predicate is supported,
but the RDFS.Property predicate is not. This means that the main
limitation when using RDFS vocabularies is that only their classes are
detected, but their properties are ignored.

OSP-core YAML ontology format

This section describes how you can create ontologies using YAML.

Tip

If you have an ontology where all entity names are in ALL_UPPERCASE,
you can use the commandline tool yaml2camelcase that is shipped with
OSP-core to transform it to an ontology with CamelCase entity names.

Introduction

In this file we will give a description of how an Ontology can be
represented in a yaml file format and how to interpret such files. For
simplicity reasons in the following we will give examples from the
* example ontology * file which can be found in osp/core/ontology/yml/ontology.city.yml.

Naming of the files and installation

Name any ontology <name>.ontology.yml, where <name> should be replaced by a user defined name.

Then you can use pico to install the tool Pico
to install the ontology:

pico install </path/to/my_ontology.ontology.yml>

Syntax of the .yml ontology

version: string

Contains semantic version Major.minor in format M.m with M and m
positive integers. minor MUST be incremented when backward
compatibility in the format is preserved. Major MUST be incremented
when backward compatibility is removed. Due to the strict nature of
the format, a change in minor is unlikely.

namespace: string

Defines the namespace of the current file. We recommend to use
all_lowercase for the namespace name, with underscore as separation.
All entities defined in this file will live in the namespace defined here.

requirements: List[string]

A list of namespaces that this namespace depends on.

author: string

Reference to the person(s) who created the file.

ontology: dict

Contains individual declarations for ontology entities as a mapping.
Each key of the mapping is the name of an ontology entity.
The key can contain letters, numbers and underscore.
By convention, they should be in CamelCase. The name of ontology classes
should start with an uppercase latter, while the name of relationships
and attributes should start with a lower case letter.
This key is later used the reference the entity from within OSP-core
in a case sensitive manner.
The value of the mapping is a mapping whose format is detailed in the
Ontology entities format.

Ontology entities format

Every declaration of an ontology entity must have the following keys:

description: string

For human consumption. An ontological short description of the carried
semantics. Should have the form: entity is a superclass_entity that
has <differentiating> terms.

subclass_of: List[``qualified entity name``].
Its value is fixed on the ontology level.

The subclass keyword expresses an ontological is-a
relation. MUST be a list of a fully qualified strings referring to another entity.
Only the entity cuba.entity is allowed to have no superclass. See CUBA namespace.

If entity A is a subclass of B and B is subclass of C,
then A is also subclass of C.

An ontology entity can be either a relationship, a cuds entity or an attribute.
Depending on that the mapping can have further keys.
For cuds entities these keys are described in
CUDS entities format section.
For relationship entities, these keys are described in
Relationship format section.
For attributes, these keys are described in
Attribute format section.

The CUBA namespace

The CUBA namespace contains a set of Common Universal Basic entities, that have special meaning in OSP-core.
The CUBA namespace is always installed in OSP-core.

cuba.Entity

The root for all ontology classes. Does not have a superclass.

cuba.Nothing

An ontology class, that is not allowed to have individuals.

cuba.relationship

The root of all relationships. Does not have a superclass.

cuba.attribute

The root of all attributes. Does not have a superclass.

cuba.Wrapper

The root of all wrappers. These are the bridge to simulation engines and databases. See the examples in examples/.

cuba.activeRelationship

The root of all active relationships. Active relationships express that one cuds object is in the container of another.

cuba.passiveRelationship

The inverse of cuba.activeRelationship.

Attribute format

Every attribute is a subclass of cuba.attribute.
The declaration of an attribute is a special case of the declaration of an entity.
It must have the keys described in Ontology entities format.
It can additionally have the following keys:

datatype: string

It is an attribute of an entity in cases when the datatype of said
entity is important.

Describes the datatype of the value that a certain entity can take. It
can be one of the following:

	BOOL: a form of data with only two possible values (usually
“true” or “false”)

	INT: a positive or negative integer number.

	FLOAT: a number containing values on both sides of the decimal
point

	STRING: a sequence of characters that can also contain spaces and
numbers. The length can be specified with “STRING:LENGTH” (e.g.
STRING:20 means the length of the string should be maximum 20
characters).

	VECTOR:datatype:D1:D2:...:Dn: a vector of the given dimensions
(D1 x D2 x … x Dn) and the given datatype.
The dimensions are always fixed.

For example, a VECTOR:INT:4:2:1 would be:

{ [(a), (b)], [(c), (d)], [(e), (f)], [(g), (h)] }

where all elements (a, b, …) are integers.
(the different delimiters are only used for visual purposes).
If no datatype is specified, it would be a FLOAT vector.

In case a datatype is not specified the default datatype is assumed to
be STRING

For example: The datatype of entity numberOfOccurrences is INT.

Note

The implementation of the vectors is experimental and will be updated as soon as
EMMO has established an appropriate wait of representing them

Class expressions

A class expression describes a subset of individuals.
They are similar to classes, but do not have a name in the ontology.
Class expressions will be used in CUDS entities format and Relationship format.
They can be either:

	A ``qualified entity name`` of a class. In this case it corresponds to all individuals of referenced class.

	Requirements on the individual’s relationships. For example:

city.hasInhabitant:
 cardinality: 1+
 range: city.Citizen
 exclusive: false

This describes the set of individuals that have at least one citizen as inhabitant.
In general it describes the individuals which have some relationship to some object.
It is a mapping from the ``qualified entity name`` of a relationship to the following keywords:

range

A class expression describing the individuals which are object of the relationship.

cardinality

The number of times individuals defined in range is allowed to be a object of the relationship.
To define the cardinality we use the following syntax:

	many / * / 0+ (default): Zero to infinity target objects are allowed.

	some / + / 1+: At least one target object is required.

	? / 0-1: At most one target object is allowed.

	a+: At least a target objects are required.

	a-b: At least a and at most b target objects are required (i.e. inclusive).

	a: Exactly a target objects are required.

exclusive

Whether the given target is the only allowed object.

	A composition of several class expressions. For example:

or:
 - city.City
 - city.Neighborhood

This is the union of all individuals that are a city or a neighbourhood.
We use the keyword or for union, and for intersection and not for complement.
After or and and, a list of class expressions for the union / intersection is expected.
After not a single class expression is expected.

The definition of class expressions is recursive. For example:

or:
 - city.City
 - city.hasPart:
 cardinality: 1+
 range: city.Neighborhood
 exclusive: false

This describes the set of all individuals that are a city or have a neighbourhood.

CUDS classes format

The declaration of a cuds entity is a special case of the declaration of an entity.
It must have the keys described in Ontology entities format.
It can contain further information:

attributes: Dict[``qualified entity name``, default_value]

Expects a mapping from the ``qualified entity name`` of an attribute to its default.
Each key must correspond to a subclass of attribute. For example:

Address:
 ...
 attributes:
 city.name: "Street"
 city.number:

Here, an address has a name and a number.
The default name is “Street”, the number has no default.
If no default is given, the user is forced to specify a value each time he creates an individual.

subclass_of: List[Class expression]

In addition to qualified entity names of classes, class expressions are also allowed.
These class expressions restrict the individuals allowed in the class. Only those
individuals are allowed that are in the intersection of the class expressions. For example:

PopulatedPlace:
 description:
 subclass_of:
 - city.GeographicalPlace
 - city.hasInhabitant:
 range: city.Citizen
 cardinality: many
 exclusive: true

Here, a populated place is a geographical place which must have citizens as inhabitants.

disjoint_with: List[Class expression]

A list of class expressions that are not allowed to share any individuals with the cuds entity.

equivalent_to: List[Class expression]

A list of class expressions who contain the same individuals as the cuds entity. For example:

PopulatedPlace:
 description:
 equivalent_to:
 - city.GeographicalPlace
 - city.hasInhabitant:
 range: city.Citizen
 cardinality: many
 exclusive: true

Here every geographical place that has citizens as inhabitants is automatically a populated place.

Relationship format

Every relationship is a subclass of cuba.relationship.
The declaration of a relationship is a special case of the declaration of an entity.
It must have the keys described in Ontology entities format.
Furthermore, it can contain the following information:

inverse: ``qualified entity name`` or empty (None)

If CUDS object A is related to CUDS object B via relationship rel, then B is related
with A via the inverse of rel.

For example: The inverse of hasPart is isPartOf.

If no inverse is given, OSP-core will automatically create one.

domain: Class expression

A class expression describing the individuals that are allowed to be a subject of the relationship.
If multiple class expressions are given, the relationship’s domain is the intersection of the class expressions.

range: Class expression

A class expression describing the individuals that are allowed to be object of the relationship.
If multiple class expressions are given, the relationship’s range is the intersection of the class expression.

characteristics: String

A list of characteristics of the relationship. The following characteristics are supported:

	reflexive

	symmetric

	transitive

	functional

	irreflexive

	asymmetric

	inversefunctional

A subclass of a relationship is called a sub-relationship.

Limitations

Class expressions, domain, range, characteristics, equivalent_to, disjoint_with
are currently not parsed by OSP-core.

 Included ontologies

Included ontologies

As described on the working with ontologies
section, to use an ontology you first have to install it, and to do so
usually you have either to define a yml
configuration file
(for OWL ontologies and RDFS vocabularies) or provide the ontology in the
OSP-core YAML ontology format.

However, in order to make using ontologies easier, we bundle a few of these
files with OSP-core to enable rapid installation of common,
well-known ontologies. Do not hesitate to contact us if you want
your ontology to be shipped with SimPhoNy.

The included ontologies, together with their domains of application, are
listed below.

	Elementary Multiperspective Material Ontology (EMMO)
- Applied sciences

	Dublin Core Metadata Initiative (DCMI)
- Metadata description

	Data Catalog Vocabulary - Version 2 (DCAT2)
- Data catalogue information

	Friend of a Friend (FOAF)
- People and information on the web

	The PROV Ontology (PROV-O)
- Provenance information

	The City Ontology
- Example ontology aimed at demonstrating the usage of SimPhoNy OSP-core

The ontologies can be installed providing the right
package identifier to
pico. You can find such
package identifier and additional information on each ontology by clicking on
the links from the list above.

Elementary Multiperspective Material Ontology (EMMO)

EMMO is a multidisciplinary effort to develop a standard representational
framework (the ontology) for applied sciences. It is based on physics,
analytical philosophy and information and communication technologies. It
has been instigated by materials science to provide a framework for
knowledge capture that is consistent with scientific principles and
methodologies. It is released under a Creative Commons
CC BY 4.0 [https://github.com/emmo-repo/EMMO/blob/master/LICENSE.md]
license.

—About EMMO section [https://github.com/emmo-repo/EMMO#about-emmo],
from the
official EMMO GitHub repository [https://github.com/emmo-repo/EMMO#readme]

For a short introduction on this ontology, see the fundamentals
section. To install the EMMO ontology [https://emmo-repo.github.io/], use

pico install emmo

and then just start creating cuds objects

>>> from osp.core.namespaces import math
>>> math.Numerical.attributes
{<OntologyAttribute math.hasNumericalData>: None}
>>> x = math.Numerical(hasNumericalData=12)
>>> x
<math.Numerical: c11cc272-cdcf-421a-8838-5f177b065746, CoreSession: @0x7f1987173190>
>>> x.hasNumericalData
12

Dublin Core Metadata Initiative (DCMI)

The Dublin Core™ Metadata Initiative, or “DCMI”, is an organization
supporting innovation in metadata design and best practices across the
metadata ecology. DCMI works openly, and it supported by a
paid-membership model [https://www.dublincore.org/membership/].

—About DCMI [https://www.dublincore.org/about/]

The Dublin Core™ Metadata Initiative has published, among others, the
DCMI Metadata Terms [https://www.dublincore.org/specifications/dublin-core/dcmi-terms/]
specification, which establishes a set of core metadata terms enabling
cross-domain description of resources on the web.

Included are the fifteen terms of the Dublin Core™ Metadata Element Set
(also known as “the Dublin Core”) plus several dozen properties, classes,
datatypes, and vocabulary encoding schemes. […] These terms are intended
to be used in combination with metadata terms from other, compatible
vocabularies in the context of application profiles.

—DCMI Metadata Terms [https://www.dublincore.org/specifications/dublin-core/dcmi-terms/]

To install the dcmitype and dcterms RDFS vocabularies from the Dublin
Core Metadata Initiative (DCMI) [https://www.dublincore.org/specifications/dublin-core/dcmi-terms/], use

pico install dcmitype dcterms

Note that due to the fact that
RDFS properties are not supported by OSP-core,
the properties in these two vocabularies will be ignored. Only the classes will
be detected.

Data Catalog Vocabulary - Version 2 (DCAT2)

DCAT is an RDF vocabulary designed to facilitate interoperability
between data
catalogs published on the Web. […]

DCAT enables a publisher to describe datasets and data services in a catalog
using a standard model and vocabulary that facilitates the consumption and
aggregation of metadata from multiple catalogs. This can increase the
discoverability of datasets and data services. It also makes it possible to
have a decentralized approach to publishing data catalogs and makes
federated search for datasets across catalogs in multiple sites possible
using the same query mechanism and structure. Aggregated DCAT metadata
can serve as a manifest file as part of the digital preservation process.

—Data Catalog Vocabulary (DCAT) - Version 2 [https://www.w3.org/TR/vocab-dcat-2/]

To install the DCAT2 ontology [https://www.w3.org/TR/vocab-dcat-2/], use

pico install dcat2

Friend of a Friend (FOAF)

FOAF is a project devoted to linking people and information using the Web.
Regardless of whether information is in people’s heads, in physical or
digital documents, or in the form of factual data, it can be linked.
FOAF integrates three kinds of network: social networks of human
collaboration, friendship and association; representational networks that
describe a simplified view of a cartoon universe in factual terms, and
information networks that use Web-based linking to share independently
published descriptions of this inter-connected world. FOAF does not
compete with socially-oriented Web sites; rather it provides an approach
in which different sites can tell different parts of the larger story,
and by which users can retain some control over their information in a
non-proprietary format.

—FOAF Vocabulary Specification [http://xmlns.com/foaf/spec/]

To install the FOAF ontology [http://xmlns.com/foaf/spec/], use

pico install foaf

The PROV Ontology (PROV-O)

The PROV Ontology (PROV-O) expresses the PROV Data Model
[PROV-DM [https://www.w3.org/TR/prov-o/#bib-PROV-DM]]
using the OWL2 Web Ontology Language (OWL2)
[OWL2-OVERVIEW [https://www.w3.org/TR/prov-o/#bib-OWL2-OVERVIEW]].
It provides a set of classes, properties, and restrictions that can be used
to represent and interchange provenance information generated in different
systems and under different contexts. It can also be specialized to create
new classes and properties to model provenance information for different
applications and domains.

—PROV-O: The PROV Ontology [https://www.w3.org/TR/prov-o/]

To install the PROV-O ontology [https://www.w3.org/TR/prov-o/], use

pico install prov

The City ontology

The City ontology is a
simple, example ontology
included with OSP-core. It provides a collection of concepts to describe
people and buildings in a city, and is aimed at demonstrating the usage of
SimPhoNy OSP-core.

To install the
city ontology, use

pico install city

 Tutorial: Ontology interface

Tutorial: Ontology interface

[image: Binder] [https://mybinder.org/v2/gh/simphony/docs/v3.9.0?filepath=docs%2Fsource%2Fjupyter%2Fontology_interface.ipynb]

This tutorial introduces the interface to the installed ontologies. The code presented is based on this example [https://github.com/simphony/osp-core/blob/master/examples/ontology_example.py].

Background

In an ontological framework, ontology entities are used as a knowledge representation form. Those can be further categorized in two groups: ontology individuals (assertional knowledge [https://en.wikipedia.org/wiki/Abox]), and ontology classes, relationships and attributes (terminological knowledge [https://en.wikipedia.org/wiki/Tbox]).

In a previous tutorial, we have discussed how to work with CUDS objects, which represent ontology individuals. In this tutorial, we present the API of all the other entities instead: ontology classes, relationships and attributes. These are defined in an ontology installation file in YAML or OWL format. The presented API enables you to
access the entities and navigate within an ontology.

In this tutorial, we will work both with the city namespace, the example namespace from OSP-core, and the math namespace from the Elementary Multiperspective Material Ontology (EMMO) [https://github.com/emmo-repo/EMMO], for which an installation file is also provided with OSP-core.

Please install the ontologies running the commands below if you have not installed them yet.

[1]:

Install the ontologies
!pico install city
!pico install emmo

INFO 2021-03-31 16:16:53,174 [osp.core.ontology.installation]: Will install the following namespaces: ['city']
INFO 2021-03-31 16:16:53,187 [osp.core.ontology.yml.yml_parser]: Parsing YAML ontology file /home/jose/.local/lib/python3.9/site-packages/osp/core/ontology/docs/city.ontology.yml
INFO 2021-03-31 16:16:53,209 [osp.core.ontology.yml.yml_parser]: You can now use `from osp.core.namespaces import city`.
INFO 2021-03-31 16:16:53,209 [osp.core.ontology.parser]: Loaded 202 ontology triples in total
INFO 2021-03-31 16:16:53,223 [osp.core.ontology.installation]: Installation successful
INFO 2021-03-31 16:16:53,753 [osp.core.ontology.installation]: Will install the following namespaces: ['emmo']
INFO 2021-03-31 16:16:53,756 [osp.core.ontology.parser]: Parsing /home/jose/.local/lib/python3.9/site-packages/osp/core/ontology/docs/emmo.yml
INFO 2021-03-31 16:16:53,756 [osp.core.ontology.parser]: Downloading https://raw.githubusercontent.com/emmo-repo/emmo-repo.github.io/master/versions/1.0.0-alpha2/emmo-inferred.owl
INFO 2021-03-31 16:16:54,299 [osp.core.ontology.parser]: Parsing /tmp/tmpvqey417g-emmo
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import mereotopology`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import physical`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import top`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import semiotics`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import perceptual`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import reductionistic`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import holistic`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import physicalistic`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import math`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import properties`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import materials`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import metrology`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import models`.
INFO 2021-03-31 16:16:54,897 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import manufacturing`.
INFO 2021-03-31 16:16:54,898 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import isq`.
INFO 2021-03-31 16:16:54,898 [osp.core.ontology.parser]: You can now use `from osp.core.namespaces import siunits`.
INFO 2021-03-31 16:16:54,901 [osp.core.ontology.parser]: Loaded 4664 ontology triples in total
INFO 2021-03-31 16:16:55,083 [osp.core.ontology.installation]: Installation successful

Accessing entities: the namespace object

To access ontology entities, we first need to know the aliases of the installed ontology namespaces. In each ontology YAML installation file, the namespace(s) that it contains is(are) stated at the top of the file. For example, at the top of the city ontology installation file [https://github.com/simphony/osp-core/blob/master/osp/core/ontology/docs/city.ontology.yml] you may find:

version: "0.0.3"

namespace: "city"

ontology:
 ...

Alternatively, you can use pico ontology installation tool to see the installed namespaces:

[2]:

!pico list

Packages:
 - city
 - emmo
Namespaces:
 - xml
 - rdf
 - rdfs
 - xsd
 - cuba
 - isq
 - ns1
 - ns2
 - owl
 - city
 - mereotopology
 - physical
 - top
 - semiotics
 - perceptual
 - reductionistic
 - holistic
 - physicalistic
 - math
 - properties
 - materials
 - metrology
 - models
 - manufacturing
 - siunits

Once we know the name of the namespace that we want to use, we import it in python. For this tutorial, we are importing the namespaces city and math. Through those imported namespace python objects, the entities within the namespaces can be accessed:

[3]:

from osp.core.namespaces import city
from osp.core.namespaces import math

There are several ways to access an ontology entity in OSP-core, which are summarized by the following list and will be demonstrated shortly after.

	By suffix. For example, for the namespace city, whose IRI [https://fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-urn-and-their-differences/] is http://www.osp-core.com/city#, fetching by the suffix Citizen would return the ontology entity with IRI http://www.osp-core.com/city#Citizen.

	By label. Fetchs the entity by the label that has been assigned to it using either the rdfs:label or skos:prefLabel predicates.

	By IRI. The full IRI [https://fusion.cs.uni-jena.de/fusion/blog/2016/11/18/iri-uri-url-urn-and-their-differences/] of an ontology entity is provided in order to fetch it.

	By string. Using a string, for example "city.LivingBeing". This is only useful in some special cases.

The most convenient way to access an ontology entity is using the dot notation in python. For example, city.Citizen. This method is a shorthand for fetching by suffix or label:

	When the keyword reference_by_label is set to True (enabled) in the ontology YAML installation file, the dot notation is a shorthand for fetching by label. This keyword is enabled in the math namespace.

	When the keyword reference_by_label is set to False (disabled) or not set, the dot notation is a shorthand for fetching by suffix instead. This keyword is disabled in the city namespace.

To get a list of all the entities available within a namespace, run list(namespace).

Tip

The dot notation supports IPython autocompletion. For example, when working on a Jupyter notebook, once the namespace has been imported, it is possible to get suggestions for the entity names by writing namespace. and pressing TAB.

Accessing an ontology entity by suffix

Let’s fetch the Citizen class, whose IRI is http://www.osp-core.com/city#Citizen.

The keyword, reference_by_label is set to False, so one can just use the dot notation.

[4]:

city.Citizen

[4]:

<OntologyClass city.Citizen>

Another alternative is using the get_from_suffix method from the namespace object. This is useful when the suffix contains characters that Python does not accept as property names, such as spaces or dashes.

[5]:

city.get_from_suffix('Citizen')

[5]:

<OntologyClass city.Citizen>

Note that the suffix is case sensitive, and therefore the following would produce an error.

[6]:

city.citizen # -> Fails.

Accessing an ontology entity by label

Let’s fetch the Integer class, whose IRI is http://emmo.info/emmo/middle/math#EMMO_f8bd64d5_5d3e_4ad4_a46e_c30714fecb7f.

The keyword reference_by_label is set to True, so we just use the dot notation.

[7]:

math.Integer

[7]:

<OntologyClass math.Integer>

Another alternative is using the square bracket notation on the namespace object. This is useful when the suffix contains characters that Python does not accept as property names, such as spaces or dashes.

[8]:

math['Integer']

[8]:

<OntologyClass math.Integer>

Fetching by label is NOT case sensitive when using the dot notation, but it is when using square brackets, so the following behavior is expected.

[9]:

math['integer'] # -> Fails.
math.integer # -> Works.

[9]:

<OntologyClass math.integer>

Accessing an ontology entity by IRI

This is only possible using the get_from_iri method from the namespace object. For example, let’s fetch the Integer entity again.

[10]:

math.get_from_iri('http://emmo.info/emmo/middle/math#EMMO_f8bd64d5_5d3e_4ad4_a46e_c30714fecb7f')

[10]:

<OntologyClass math.Integer>

Access entities using a string

Sometimes you only have a string refering to an entity. Using the get_entity function you can get the corresponding python object easily:

[11]:

from osp.core.namespaces import get_entity # noqa: E402

print("\nYou can get an entity with a string")
print(get_entity("city.LivingBeing"))
print(get_entity("city.LivingBeing") == city.LivingBeing)

You can get an entity with a string
city.LivingBeing
True

Accessing an entity’s name, IRI and namespace

Each ontology entity has an associated name which can be accessed using the name property.

[12]:

city.LivingBeing.name

[12]:

'LivingBeing'

The IRI of an entity might be accessed using the iri property.

[13]:

math.Real.iri

[13]:

rdflib.term.URIRef('http://emmo.info/emmo/middle/math#EMMO_18d180e4_5e3e_42f7_820c_e08951223486')

In addition, it is possible to get the namespace object to which the entity belongs using the namespace property.

[14]:

math.Equation.namespace

[14]:

<math: http://emmo.info/emmo/middle/math#>

Accessing super- and subclasses

Using the properties superclasses and subclasses it is easy to navigate the ontology. Direct superclasses and subclasses can also be accessed:

[15]:

print("\nYou can access the superclasses and the subclasses")
print(city.LivingBeing.superclasses)
print(city.LivingBeing.subclasses)

print("\nYou can access the direct superclasses and subclasses")
print(city.LivingBeing.direct_superclasses)
print(city.LivingBeing.direct_subclasses)

print("\nYou can access a description of the entities")
print(city.LivingBeing.description)

print("\nYou can test if one entity is a subclass / superclass of another")
print(city.Person.is_subclass_of(city.LivingBeing))
print(city.LivingBeing.is_superclass_of(city.Person))

You can access the superclasses and the subclasses
{<OntologyClass cuba.Entity>, <OntologyClass city.LivingBeing>}
{<OntologyClass city.Person>, <OntologyClass city.Citizen>, <OntologyClass city.LivingBeing>}

You can access the direct superclasses and subclasses
{<OntologyClass cuba.Entity>}
{<OntologyClass city.Person>}

You can access a description of the entities
A being that lives

You can test if one entity is a subclass / superclass of another
True
True

Testing the type of the entities

In the ontology, three types of entities can be defined: classes, relationships and attributes. OSP-core has its own vocabulary, the CUBA namespace, which describes, among other things, such entity types. Relationships are subclasses of CUBA.RELATIONSHIP and attributes are subclasses of CUBA.ATTRIBUTE. There are different Python objects for the different entity types. You can use both to check which type of entity you are dealing
with:

[16]:

from osp.core.namespaces import cuba # noqa: E402

These are the classes for the ontology entities
from osp.core.ontology import (# noqa: F401, E402
 OntologyEntity,
 OntologyClass,
 OntologyRelationship,
 OntologyAttribute
)

print("\nYou can test if an entity is a class")
print(isinstance(city.LivingBeing, OntologyClass))
print(not city.LivingBeing.is_subclass_of(cuba.relationship)
 and not city.LivingBeing.is_subclass_of(cuba.attribute))

print("\nYou can test if an entity is a relationship")
print(isinstance(city.hasInhabitant, OntologyRelationship))
print(city.hasInhabitant.is_subclass_of(cuba.relationship))

print("\nYou can test if an entity is a attribute")
print(isinstance(city.name, OntologyAttribute))
print(city.name.is_subclass_of(cuba.attribute))

You can test if an entity is a class
True
True

You can test if an entity is a relationship
True
True

You can test if an entity is a attribute
True
True

Operations specific to ontology classes

The different types of entities differ in the operations they offer. For classes, you can access the attributes:

[17]:

print("\nYou can get the attributes of an ontology class and their defaults")
print(city.Citizen.attributes)

print("\nYou can get the non-inherited attributes and their defaults")
print(city.Citizen.own_attributes)
print(city.LivingBeing.own_attributes)

You can get the attributes of an ontology class and their defaults
{<OntologyAttribute city.name>: (rdflib.term.Literal('John Smith'), False, None), <OntologyAttribute city.age>: (rdflib.term.Literal('25', datatype=rdflib.term.URIRef('http://www.w3.org/2001/XMLSchema#integer')), False, None)}

You can get the non-inherited attributes and their defaults
{}
{<OntologyAttribute city.name>: (rdflib.term.Literal('John Smith'), False, None), <OntologyAttribute city.age>: (rdflib.term.Literal('25', datatype=rdflib.term.URIRef('http://www.w3.org/2001/XMLSchema#integer')), False, None)}

In addition, OSP-core has special support for the owl:Restriction and owl:Composition classes of the Web Ontology Language (OWL) [https://en.wikipedia.org/wiki/Web_Ontology_Language] (check the OWL ontology specification [https://www.w3.org/TR/owl2-syntax/] for more details). Such OWL classes are represented by the python classes Restriction and Composition. See operations specific to ontology axioms for more information.

For example, in the city ontology, the citizens have a restriction on the name and age attributes: a citizen must have exactly one name and one age. These axioms can be accessed using the axioms property, which returns both the restriction and compositions affecting the class.

[18]:

tuple(str(x) for x in city.Citizen.axioms)

[18]:

('city.name QUANTIFIER.EXACTLY 1', 'city.age QUANTIFIER.EXACTLY 1')

Operations specific to ontology axioms

For restrictions, the quantifier, the target, the restriction type and the relationship/attribute (depending on whether it is a restriction of the relationship type or attribute type) may be accessed.

[19]:

restriction = city.Citizen.axioms[0]
print(restriction)
print(restriction.quantifier)
print(restriction.target)
print(restriction.rtype)
print(restriction.attribute)

city.name QUANTIFIER.EXACTLY 1
QUANTIFIER.EXACTLY
1
RTYPE.ATTRIBUTE_RESTRICTION
city.name

For compositions, both the operator and operands can be accesed.

[20]:

from osp.core.ontology.oclass_composition import Composition
composition = tuple(x for x in math.Integer.axioms if type(x) is Composition)[0]
print(composition)
print(composition.operator)
print(composition.operands)

(math.Mathematical OPERATOR.AND perceptual.Symbol)
OPERATOR.AND
[<OntologyClass math.Mathematical>, <OntologyClass perceptual.Symbol>]

Operations specific to ontology relationships

You can access the inverse of relationships.

[21]:

print("\nYou can get the inverse of a relationship")
print(city.hasInhabitant.inverse)

You can get the inverse of a relationship
city.INVERSE_OF_hasInhabitant

Operations specific to attributes

You can acces the datatype and the argument name of attributes.

[22]:

print("\nYou can get the argument name of an attribute. "
 "The argument name is used as keyword argument when instantiating CUDS objects.")
print(city.age.argname)

print("\nYou can get the datatype of attributes")
print(city.age.datatype)

print("\nYou can use the attribute to convert values "
 "to the datatype of the attribute")
result = city.age.convert_to_datatype("10")
print(type(result), result)

print("\nAnd likewise to convert values to the python basic type "
 "associated with the datatype of the attribute.")
result = city.name.convert_to_basic_type(5)
print(type(result), result)

You can get the argument name of an attribute. The argument name is used as keyword argument when instantiating CUDS objects.
age

You can get the datatype of attributes
http://www.w3.org/2001/XMLSchema#integer

You can use the attribute to convert values to the datatype of the attribute
<class 'int'> 10

And likewise to convert values to the python basic type associated with the datatype of the attribute.
<class 'str'> 5

Check the API Reference for more details on the methods *convert_to_datatype* and *convert_to_basic_type*.

Creating CUDS using ontology classes

You can call ontology classes to create CUDS objects. To learn more, have a look at the CUDS API tutorial.

[23]:

print("\nYou can instantiate CUDS objects using ontology classes")
print(city.Citizen(name="Test Person", age=42))

print("\nYou can check if a CUDS object is an instance of a ontology class")
print(city.Citizen(name="Test Person", age=42).is_a(city.Citizen))
print(city.Citizen(name="Test Person", age=42).is_a(city.LivingBeing))

print("\nYou can get the ontology class of a CUDS object.")
print(city.Citizen(name="Test Person", age=42).oclass)

You can instantiate CUDS objects using ontology classes
city.Citizen: e0947100-9c40-415f-92c8-a86b796dbb01

You can check if a CUDS object is an instance of a ontology class
True
True

You can get the ontology class of a CUDS object.
city.Citizen

 Wrapper development

Wrapper development

For an skeleton structure of a wrapper, you can visit the wrapper development repo [https://github.com/simphony/wrapper-development].
For a tutorial on creating a simple wrapper, there is a jupyter notebook available.

Ontology

The end goal is to build one, unique and standard ontology with all the relevant entities and relationships.
This ontology could use modules where the entities regarding a certain domain are present.

However, for the development of a wrapper, it is usually more practical to create a minimal temporary ontology
with the entities required by a wrapper. Once the development is in a more stable stage, the development and merge
of a correct ontology can be done, and should not require major changes in the code.

These are the requirements for a minimal wrapper ontology:

	Should contain an entity representing the wrapper.
Said entity should inherit from (subclass, is_a) cuba.Wrapper.

	All attributes should subclass cuba.attribute.

	Top level entities should subclass cuba.Entity

	Active relationships should subclass cuba.ActiveRelationship

	Passive relationships should subclass cuba.PassiveRelationship

 Dummy ontology sample

version: "M.m"

author: Parmenides <parmenides@ontology.creator>

namespace: some_new_wrapper_ontology

ontology:
 aRelationship:
 description: "default relationship"
 subclass_of:
 - cuba.activeRelationship
 inverse: some_new_wrapper_ontology.pihsnoitalerA
 default_rel: true

 pihsnoitalerA:
 description: "inverse of the default relationship"
 subclass_of:
 - cuba.passiveRelationship
 inverse: some_new_wrapper_ontology.aRelationship

 ################

 SomeNewWrapper:
 subclass_of:
 - cuba.Wrapper

 value:
 subclass_of:
 - cuba.attribute

 SomeEntity:
 subclass_of:
 - cuba.Entity

Coding

An advantage of the 3-layered-design that we follow is the modularity and conceptual separation.
The closer to the user, the higher the abstraction.

This allows us to group and clearly define which components should and which ones should not be modified when creating a new wrapper.

	Semantic layer:
Requires no work.
As presented in the previous section, only an entity representing the wrapper has to be present in the ontology.

	Interoperability layer:

	Session class:
Represents the bulk of the work that a wrapper developer needs to do.
A new class inheriting from the appropriate Session Abstract Base Class must be coded.
It should at least implement all the inherited abstract methods.

	__str__(self): String representation of the wrapper.

	_apply_added(self, root_obj, buffer): Add all the elements in buffer to the engine.

	_apply_updated(self, root_obj, buffer): Update all the elements in buffer in the engine.

	_apply_deleted(self, root_obj, buffer): Remove all the elements in buffer from the engine.

	_load_from_backend(self, uids, expired=None): Loads the given uids (and the dependant entities)
with the latest information from the backend.
Only loads the directly related information, not all the children recursively.
This method must be implemented for a wrapper to work.

	Specific for a simulation:

	_run(self, root_cuds_object): Call the run method on the simulation.

	Specific for a database:

	_initialize(self): Initialise the database.

	_load_first_level(self): Load the first level of children from the root from the database.

	_init_transaction(self): Start the transaction.

	_rollback_transaction(self): Rollback the transaction.

	close(self): Close the connection.

	Syntactic layer:
If none is available, one must be developed.

To facilitate the creation of the session class on the interoperability layer,
there are several session abstract base classes that you can make your session
inherit from, which already include some additional generic functions common to a few
typical applications: databases, triplestores and simulation engines.

On the diagram below, you may observe a simplified session inheritance scheme
for OSP-core. As a wrapper developer, you will most probably want to inherit
from one of following abstract classes: WrapperSession, DbWrapperSession,
TripleStoreWrapperSession, SqlWrapperSession, or SimWrapperSession.
Your new wrapper session would be located of the OSP-core box,
together among other wrapper sessions like the Simlammps, Sqlite or SqlAlchemy
sessions.

[image: skinparam { Shadowing false BackgroundColor transparent ClassBackgroundColor #E3E3E3 ClassBorderColor black PackageBorderColor black PackageBackgroundColor #9FC6DE ArrowColor #179c7d NoteBackgroundColor transparent NoteBorderColor black } rectangle "OSP-core" as OSP { abstract class Session { } class CoreSession implements Session { } abstract class WrapperSession extends Session { } class TransportSession implements WrapperSession { } abstract class DbWrapperSession extends WrapperSession { commit() } abstract class TripleStoreWrapperSession extends DbWrapperSession { } abstract class SqlWrapperSession extends TripleStoreWrapperSession { } abstract class SimWrapperSession extends WrapperSession { run() } } rectangle "Sqlite wrapper" as sqlite { class SqliteWrapperSession implements SqlWrapperSession { } } rectangle "SqlAlchemy wrapper" as sqlalchemy { class SqlAlchemyWrapperSession implements SqlWrapperSession { } } rectangle "Your wrapper" as yourwrapper { class YourSession{ } } rectangle "Simlammps wrapper" as simlammps { class SimlammpsSession implements SimWrapperSession { } } ' ----------------------- ' -------- NOTES -------- ' ----------------------- note as OSP.note_core The CoreSession is the default shared session for all Python objects end note OSP.note_core .. CoreSession note as note_db The db changes are persisted via cuds_object.session.commit() end note note_db .. DbWrapperSession note as OSP.note_sim The simulation is run by calling cuds_object.session.run() end note OSP.note_sim .. SimWrapperSession]

Simplified session inheritance scheme

Engine installation

Most engines will require some sort of compilation or installation before being able to use them through Python.

To facilitate the installation of the backend to the end users, a shell script with the necessary commands should be made available.
It is also recommended to split the installation of the engine from the installation of the engine requirements.

 Sample install_engine_requirements.sh
 #!/bin/bash
 #
 # Author: Ada Lovelace <ada.lovelace@programmer.algorithm>
 #
 # Description: This script install the requirements for some engine
 # Used as part of the installation for SomeWrapper.
 #
 # Run Information: This script is called by install_engine.sh

 echo "Installing necessary requirements for the engine"
 platform=$(python3 -mplatform)

 case $platform in
 "Ubuntu")
 sudo apt-get update
 sudo apt-get install cmake
 ;;
 "centos")
 sudo yum update
 sudo yum install make -y
 sudo yum install cmake -y
 ;;
 # Add other platforms here
 esac

 Sample install_engine.sh
 #!/bin/bash
 #
 # Author: Ada Lovelace <ada.lovelace@programmer.algorithm>
 #
 # Description: This script installs SomeEngine and its Python binding
 # Used as part of the installation for SomeWrapper.
 #
 # Run Information: This script is run manually.

 ###################################
 ### Install engine requirements ###
 ###################################
 ./install_engine_requirements.sh

 ################################
 ### Download necessary files ###
 ################################
 echo "Checking out a recent stable version"
 git clone some-repo.com/some-engine.git
 cd some-engine

 ############################
 ### Perform installation ###
 ############################
 cmake cmake
 make install

 #########################
 ### Test installation ###
 #########################
 {
 python3 -c 'from someEngine import engine; engine.test()'
 } || {
 echo "There was an error with the installation."
 echo "Please, try again or contact the developer."
 }

When the implementation of the wrapper is done, the user should be able to install all the necessary components via:

(env) user@computer:~/some_wrapper$./install_engine.sh
(env) user@computer:~/some_wrapper$ python setup.py install

Dockerfile with the engine

Apart from a system installation, we highly recommend providing a Dockerfile with the engine
and other minimal requirements, in case the system installation is not possible or desired.

Similar to how OSP-core is the structure on top of which the wrappers are made,
we designed a schema of Docker images where OSP-core is used as a base image.

Thus, OSP-core has an image (currently using Ubuntu) that should be tagged simphony/osp-core:<VERSION>.
The Dockerfile of a wrapper will have that image in the FROM statement at the top,
and take care of installing the engine requirements (and the wrapper itself).

To fix the tagging of the images and the versioning compatibility,
the Dockerfile should be installed via the provided docker_install.sh script.
It will tag the OSP-core image and call the Dockerfile in the root of the wrapper accordingly.

In terms of implementation, a wrapper developer needs to take care of the Dockerfile,
making sure to leave the first two lines as they are in the wrapper development repo [https://github.com/simphony/wrapper-development/blob/master/Dockerfile].
docker_install.sh will only have to be modified with the proper tag for the wrapper image.

Continuous Integration

GitLab provides Continuous Integration via the .gitlab-ci.yml file.
This should be used for checking both the style and the functionality of the code automatically after each commit.

If the wrapper requires the installation of an engine, it would probably be best to install it in a Docker image
and push the image to Gitlab Container Registry so that the CI jobs use that image as the base system in which to run.

The Dockerfile for the Container Registry image will be very similar to the one used for installing the engine.
However, here it might be useful to install other libraries like flake8 for style checks.

Utility functions for wrapper development

We have developed some functions that will probably come in handy when developing a wrapper.
You can find them in osp.core.utils.wrapper_development [https://github.com/simphony/osp-core/blob/master/osp/core/utils/wrapper_development.py].

Wrapper Examples

Some wrappers we are developing are:

	SQLAlchemy [https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/sqlalchemy-wrapper]

	SQLite [https://github.com/simphony/osp-core/tree/master/osp/wrappers/sqlite]

	SimLammps [https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/simlammps]

	SimGromacs [https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/simgromacs]

	SimOpenFoam [https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/simopenfoam]

	Quantum Espresso [https://github.com/simphony/quantum-espresso-wrapper]

 Tutorial: Simple wrapper development

Tutorial: Simple wrapper development

[image: Binder] [https://mybinder.org/v2/gh/simphony/docs/v3.9.0?filepath=docs%2Fsource%2Fjupyter%2Fwrapper_development.ipynb]

In this tutorial we will implement a very simple simulation wrapper. It can be used to understand which methods need to be implemented, and how.

The source files can be found here [https://github.com/simphony/wrapper-development].

Background

Wrappers are the way to extend SimPhoNy to support other back-ends. For an in-depth explanation, you can go to the wrapper development section of the documentation. Here we will explain with more detail what has to be implemented.

Requirements

In order to run this code, you need to have the simple_ontology available here [https://github.com/simphony/wrapper-development/blob/master/osp/wrappers/simple_simulation/simple_ontology.ontology.yml].

Remember that once you have OSP-core installed and the ontology file locally, you can simply run pico install <path/to/ontology_file.yml>

[]:

You can download and install the ontology by running this cell
!curl -s https://raw.githubusercontent.com/simphony/wrapper-development/master/osp/wrappers/simple_simulation/simple_ontology.ontology.yml -o simple_ontology.ontology.yml
!pico install simple_ontology.ontology.yml

Let’s get hands on

Syntactic layer

As you know, SimPhoNy consists of 3 layers, with the wrappers being relevant in the last 2 (interoperability and syntactic layers). The syntactic layer talks directly to the back-end in a way that it can be understood.

Since this wrapper aims to be as minimalistic as possible (while still being meaningfull), we have created a dummy syntactic layer that emulates talking to a simulation tool.

Note: In order to reduce the amount of code, the docstrings hav been erased. You can refer to the source file [https://github.com/simphony/wrapper-development/blob/master/osp/wrappers/simple_simulation/simulation_engine.py] for the complete information.

[1]:

This is the representation of an atom in the "engine"
class Atom():

 def __init__(self, position, velocity):
 self.position = position
 self.velocity = velocity

The engine only works with atoms, setting and getting their position and velocities

[2]:

class SimulationEngine:
 def __init__(self):
 self.atoms = list()
 print("Engine instantiated!")

 def __str__(self):
 return "Some Engine Connection"

 def run(self, timesteps=1):
 print("Now the engine is running")
 for atom in self.atoms:
 atom.position += atom.velocity * timesteps

 def add_atom(self, position, velocity):
 print("Add atom %s with position %s and velocity %s"
 % (len(self.atoms), position, velocity))
 self.atoms.append(Atom(position, velocity))

 def update_position(self, idx, position):
 print("Update atom %s. Setting position to %s"
 % (idx, position))
 self.atoms[idx].position = position

 def update_velocity(self, idx, velocity):
 print("Update atom %s. Setting velocity to %s"
 % (idx, velocity))
 self.atoms[idx].velocity = velocity

 def get_velocity(self, idx):
 return self.atoms[idx].velocity

 def get_position(self, idx):
 return self.atoms[idx].position

Interoperability layer

Since a lot of 3rd-party tools come with a syntactic layer, the bulk of the work when developping a wrapper for SimPhoNy is here.

We will explain step by step all the code required.

First, we import the parent Simulation Wrapper Session and the namespace (ontology). The engine is not necessary since it is in the previous codebock.

[]:

from osp.core.session import SimWrapperSession
from osp.wrappers.simple_simulation import SimulationEngine
from osp.core.namespaces import simple_ontology

Next, we will go through each of the methods.

Note: to be able to break the class into multiple blocks, we will use inheritance, to add a method each time. In truth, all the definitions should go under one same class definition.

The first method is the __init__. This method is called when a new object is instantiated. Here we will call the __init__ method of the parent class and initialise the necessary elements.

Most simulation engines will have an internal way to keep track of, for example, particles. To make sure that the entities in the semantic layer are properly synched, we usually use a mapper. This could be anything from a list or dictionary to a more complex and sofisticated data structure.

[4]:

class SimpleSimulationSession(SimWrapperSession):

 def __init__(self, engine=None, **kwargs):
 super().__init__(engine or SimulationEngine(), **kwargs)
 self.mapper = dict() # maps uuid to index in the backend

Next comes the output to the str() method. It will be a string returned in __str__(self).

[5]:

class SimpleSimulationSession(SimpleSimulationSession):

 def __str__(self):
 return "Simple sample Wrapper Session"

When the run() or commit() method is called on the session, all the objects that have been added since the last run have to be sent to the back end. This is done through _apply_added. The method should iterate through all the entities in the buffer and trigger different actions depending on which type of entity it is.

Remember that we can check the type using the is_a method, or querying for the oclass attribute of an entity.

In this example, we will only contact the back end if an atom has been added. However, normal wrappers will have a lot more comparisons (if and elif) to determine which entity it is and act accordingly

[6]:

class SimpleSimulationSession(SimpleSimulationSession):

 # OVERRIDE
 def _apply_added(self, root_obj, buffer):
 """Adds the added cuds to the engine."""
 for obj in buffer.values():
 if obj.is_a(simple_ontology.Atom):
 # Add the atom to the mapper
 self.mapper[obj.uid] = len(self.mapper)
 pos = obj.get(oclass=simple_ontology.Position)[0].value
 vel = obj.get(oclass=simple_ontology.Velocity)[0].value
 self._engine.add_atom(pos, vel)

Just like _apply_added is used to modify the engine with the new objects, _apply_updated changes the existing ones.

[7]:

class SimpleSimulationSession(SimpleSimulationSession):

 # OVERRIDE
 def _apply_updated(self, root_obj, buffer):
 """Updates the updated cuds in the engine."""
 for obj in buffer.values():

 # case 1: we change the velocity
 if obj.is_a(simple_ontology.Velocity):
 atom = obj.get(rel=simple_ontology.isPartOf)[0]
 idx = self.mapper[atom.uid]
 self._engine.update_velocity(idx, obj.value)

 # case 2: we change the position
 elif obj.is_a(simple_ontology.Position):
 atom = obj.get(rel=simple_ontology.isPartOf)[0]
 idx = self.mapper[atom.uid]
 self._engine.update_position(idx, obj.value)

Similarly to the previous methods, _apply_deleted should remove entities from the engine. In this specific case we left it empty to simplify the code (both in the session and the engine classes).

[8]:

class SimpleSimulationSession(SimpleSimulationSession):
 # OVERRIDE
 def _apply_deleted(self, root_obj, buffer):
 """Deletes the deleted cuds from the engine."""

The previous methods synchronise the engine with the cuds, i.e. the communication is from the semantic layer towards the syntactic. The way to update the cuds with the latest information from the engine is _load_from_backend.

It is most often called when the user calls the get on a cuds object that has potentially been changed by the engine.

When _load_from_backend is called for a given cuds object (through its uid), the method should: - Check if any of the attributes of the object has changed (like the value for a position). - Check if any new children cuds objects have been created (like a static atom that gets a new velocity when another bumps into it).

However, it does not have to be recursive and check for more than itself. This is because if the user queries any of the contained elements, that will trigger another call to _load_from_backend.

[9]:

class SimpleSimulationSession(SimpleSimulationSession):

 # OVERRIDE
 def _load_from_backend(self, uids, expired=None):
 """Loads the cuds object from the simulation engine"""
 for uid in uids:
 if uid in self._registry:
 obj = self._registry.get(uid)

 # check whether user wants to load a position
 if obj.is_a(simple_ontology.Position):
 atom = obj.get(rel=simple_ontology.isPartOf)[0]
 idx = self.mapper[atom.uid]
 pos = self._engine.get_position(idx)
 obj.value = pos

 # check whether user wants to load a velocity
 elif obj.is_a(simple_ontology.Velocity):
 atom = obj.get(rel=simple_ontology.isPartOf)[0]
 idx = self.mapper[atom.uid]
 vel = self._engine.get_velocity(idx)
 obj.value = vel

 yield obj

The last method that needs to be overridden is _run. It simply has to call the run method of the engine. This could also need to send some information, like the number of steps. For that reason, the root_cuds_object is available for query.

[10]:

class SimpleSimulationSession(SimpleSimulationSession):

 # OVERRIDE
 def _run(self, root_cuds_object):
 """Call the run command of the engine."""
 self._engine.run()

Now we can run an example:

[11]:

from osp.core.utils import pretty_print
import numpy as np

m = simple_ontology.Material()
for i in range(3):
 a = m.add(simple_ontology.Atom())
 a.add(
 simple_ontology.Position(value=[i, i, i], unit="m"),
 simple_ontology.Velocity(value=np.random.random(3), unit="m/s")
)

Run a simulation
with SimpleSimulationSession() as session:
 w = simple_ontology.Wrapper(session=session)
 m = w.add(m)
 w.session.run()

 pretty_print(m)

 for atom in m.get(rel=simple_ontology.hasPart):
 atom.get(oclass=simple_ontology.Velocity)[0].value = [0, 0, 0]
 w.session.run()

 pretty_print(m)

Engine instantiated!
Add atom 0 with position [0. 0. 0.] and velocity [0.63000616 0.38951439 0.12717548]
Add atom 1 with position [1. 1. 1.] and velocity [0.80816851 0.04562681 0.44983098]
Add atom 2 with position [2. 2. 2.] and velocity [0.3849223 0.50767213 0.82963311]
Now the engine is running
- Cuds object:
 uuid: a0a97dbe-584d-4764-b085-7b597e323d20
 type: simple_ontology.Material
 superclasses: cuba.Entity, simple_ontology.Material
 description:
 To Be Determined

 |_Relationship simple_ontology.hasPart:
 - simple_ontology.Atom cuds object:
 . uuid: 221a1793-c54a-4e42-bdeb-08921617fbac
 . |_Relationship simple_ontology.hasPart:
 . - simple_ontology.Position cuds object:
 . . uuid: db17082e-d9d3-4a48-bce1-9402d4315200
 . . unit: m
 . . value: [0.63000616 0.38951439 0.12717548]
 . - simple_ontology.Velocity cuds object:
 . uuid: fc7d778d-b18a-4b60-a6ab-ba855a2c2874
 . value: [0.63000616 0.38951439 0.12717548]
 . unit: m/s
 - simple_ontology.Atom cuds object:
 . uuid: 222df5d0-c0fe-435b-b5e2-0d5f7ebd32a9
 . |_Relationship simple_ontology.hasPart:
 . - simple_ontology.Position cuds object:
 . . uuid: f0eb08c4-88a3-40de-893f-89473cd194e8
 . . value: [1.80816851 1.04562681 1.44983098]
 . . unit: m
 . - simple_ontology.Velocity cuds object:
 . uuid: d3e7b5ce-3409-4a4e-bbdb-13a2addaee1c
 . value: [0.80816851 0.04562681 0.44983098]
 . unit: m/s
 - simple_ontology.Atom cuds object:
 uuid: 13bfe4ee-32e8-4fbe-bad5-f98f46aa297a
 |_Relationship simple_ontology.hasPart:
 - simple_ontology.Position cuds object:
 . uuid: da5c35f0-afe5-4b56-b5fa-631b72ee32ad
 . value: [2.3849223 2.50767213 2.82963311]
 . unit: m
 - simple_ontology.Velocity cuds object:
 uuid: 9b6c2c1c-3e63-4144-b7c9-d6223c0b79f7
 value: [0.3849223 0.50767213 0.82963311]
 unit: m/s
Update atom 0. Setting velocity to [0. 0. 0.]
Update atom 1. Setting velocity to [0. 0. 0.]
Update atom 2. Setting velocity to [0. 0. 0.]
Now the engine is running
- Cuds object:
 uuid: a0a97dbe-584d-4764-b085-7b597e323d20
 type: simple_ontology.Material
 superclasses: cuba.Entity, simple_ontology.Material
 description:
 To Be Determined

 |_Relationship simple_ontology.hasPart:
 - simple_ontology.Atom cuds object:
 . uuid: 221a1793-c54a-4e42-bdeb-08921617fbac
 . |_Relationship simple_ontology.hasPart:
 . - simple_ontology.Position cuds object:
 . . uuid: db17082e-d9d3-4a48-bce1-9402d4315200
 . . unit: m
 . . value: [0.63000616 0.38951439 0.12717548]
 . - simple_ontology.Velocity cuds object:
 . uuid: fc7d778d-b18a-4b60-a6ab-ba855a2c2874
 . value: [0. 0. 0.]
 . unit: m/s
 - simple_ontology.Atom cuds object:
 . uuid: 222df5d0-c0fe-435b-b5e2-0d5f7ebd32a9
 . |_Relationship simple_ontology.hasPart:
 . - simple_ontology.Position cuds object:
 . . uuid: f0eb08c4-88a3-40de-893f-89473cd194e8
 . . value: [1.80816851 1.04562681 1.44983098]
 . . unit: m
 . - simple_ontology.Velocity cuds object:
 . uuid: d3e7b5ce-3409-4a4e-bbdb-13a2addaee1c
 . unit: m/s
 . value: [0. 0. 0.]
 - simple_ontology.Atom cuds object:
 uuid: 13bfe4ee-32e8-4fbe-bad5-f98f46aa297a
 |_Relationship simple_ontology.hasPart:
 - simple_ontology.Position cuds object:
 . uuid: da5c35f0-afe5-4b56-b5fa-631b72ee32ad
 . value: [2.3849223 2.50767213 2.82963311]
 . unit: m
 - simple_ontology.Velocity cuds object:
 uuid: 9b6c2c1c-3e63-4144-b7c9-d6223c0b79f7
 value: [0. 0. 0.]
 unit: m/s

 API Reference

API Reference

This document is for developers and/or advanced users of OSP-core, it contains all API details.

CUDS

	
class osp.core.cuds.Cuds(attributes: Dict[osp.core.ontology.attribute.OntologyAttribute, Any], oclass: Optional[osp.core.ontology.oclass.OntologyClass] = None, session: Optional[osp.core.session.session.Session] = None, iri: Optional[rdflib.term.URIRef] = None, uid: Optional[Union[uuid.UUID, rdflib.term.URIRef]] = None, extra_triples: Iterable[Tuple[Union[rdflib.term.URIRef, rdflib.term.BNode], Union[rdflib.term.URIRef, rdflib.term.BNode], Union[rdflib.term.URIRef, rdflib.term.BNode]]] = ())

	Bases: object

A Common Universal Data Structure.

The CUDS object is an ontology individual that can be used like a
container. It has attributes and is connected to other cuds objects via
relationships.

	
add(*args: osp.core.cuds.Cuds, rel: Optional[osp.core.ontology.relationship.OntologyRelationship] = None) → Union[osp.core.cuds.Cuds, List[osp.core.cuds.Cuds]]

	Add CUDS objects to their respective relationship.

If the added objects are associated with the same session,
only a link is created. Otherwise, the a deepcopy is made and added
to the session of this Cuds object.
Before adding, check for invalid keys to avoid inconsistencies later.

	Parameters

	
	args (Cuds) – The objects to be added

	rel (OntologyRelationship) – The relationship between the objects.

	Raises

	
	TypeError – Ne relationship given and no default specified.

	ValueError – Added a CUDS object that is already in the container.

	Returns

	
	The CUDS objects that have been added,
	associated with the session of the current CUDS object.
Result type is a list, if more than one CUDS object is
returned.

	Return type

	Union[Cuds, List[Cuds]]

	
get(*uids: typing.Union[uuid.UUID, rdflib.term.URIRef], rel: osp.core.ontology.relationship.OntologyRelationship = <OntologyRelationship cuba.activeRelationship>, oclass: typing.Optional[osp.core.ontology.oclass.OntologyClass] = None, return_rel: bool = False) → Union[osp.core.cuds.Cuds, List[osp.core.cuds.Cuds]]

	Return the contained elements.

Filter elements by given type, uid or relationship.
Expected calls are get(), get(*uids), get(rel), get(oclass),
get(*indentifiers, rel), get(rel, oclass).
If uids are specified:

The position of each element in the result is determined by to the
position of the corresponding uid in the given list of
uids. In this case, the result can contain None values if a
given uid is not a child of this cuds_object.
If only a single indentifier is given, only this one element is
returned (i.e. no list).

	If no uids are specified:
	The result is a collection, where the elements are ordered
randomly.

	Parameters

	
	uids (Union[UUID, URIRef]) – uids of the elements.

	rel (OntologyRelationship, optional) – Only return cuds_object
which are connected by subclass of given relationship.
Defaults to cuba.activeRelationship.

	oclass (OntologyClass, optional) – Only return elements which are a
subclass of the given ontology class. Defaults to None.

	return_rel (bool, optional) – Whether to return the connecting
relationship. Defaults to False.

	Returns

	The queried objects.

	Return type

	Union[Cuds, List[Cuds]]

	
get_attributes()

	Get the attributes as a dictionary.

	
get_triples(include_neighbor_types=False)

	Get the triples of the cuds object.

	
property iri: rdflib.term.URIRef

	Get the IRI of the CUDS object.

	
is_a(oclass)

	Check if the CUDS object is an instance of the given oclass.

	Parameters

	oclass (OntologyClass) – Check if the CUDS object is an instance of
this oclass.

	Returns

	Whether the CUDS object is an instance of the given oclass.

	Return type

	bool

	
iter(*uids: typing.Union[uuid.UUID, rdflib.term.URIRef], rel: osp.core.ontology.relationship.OntologyRelationship = <OntologyRelationship cuba.activeRelationship>, oclass: typing.Optional[osp.core.ontology.oclass.OntologyClass] = None, return_rel: bool = False) → Iterator[osp.core.cuds.Cuds]

	Iterate over the contained elements.

Only iterate over objects of a given type, uid or oclass.

Expected calls are iter(), iter(*uids), iter(rel),
iter(oclass), iter(*uids, rel), iter(rel, oclass).
If uids are specified:

The position of each element in the result is determined by to the
position of the corresponding uid in the given list of
uids. In this case, the result can contain None values if a
given uid is not a child of this cuds_object.

	If no uids are specified:
	The result is ordered randomly.

	Parameters

	
	uids (Union[UUID, URIRef]) – uids of the elements.

	rel (OntologyRelationship, optional) – Only return cuds_object
which are connected by subclass of given relationship.
Defaults to cuba.activeRelationship.

	oclass (OntologyClass, optional) – Only return elements which are a
subclass of the given ontology class. Defaults to None.

	return_rel (bool, optional) – Whether to return the connecting
relationship. Defaults to False.

	Returns

	The queried objects.

	Return type

	Iterator[Cuds]

	
property oclass

	Get the type of the cuds object.

	
property oclasses

	Get the ontology classes of this CUDS object.

	
remove(*args: typing.Union[osp.core.cuds.Cuds, uuid.UUID, rdflib.term.URIRef], rel: osp.core.ontology.relationship.OntologyRelationship = <OntologyRelationship cuba.activeRelationship>, oclass: typing.Optional[osp.core.ontology.oclass.OntologyClass] = None)

	Remove elements from the CUDS object.

Expected calls are remove(), remove(*uids/Cuds),
remove(rel), remove(oclass), remove(*uids/Cuds, rel),
remove(rel, oclass)

	Parameters

	
	args (Union[Cuds, UUID, URIRef]) – UUIDs of the elements to remove
or the elements themselves.

	rel (OntologyRelationship, optional) – Only remove cuds_object
which are connected by subclass of given relationship.
Defaults to cuba.activeRelationship.

	oclass (OntologyClass, optional) – Only remove elements which are a
subclass of the given ontology class. Defaults to None.

	Raises

	RuntimeError – No CUDS object removed, because specified CUDS
 objects are not in the container of the current CUDS object
 directly.

	
property session: osp.core.session.session.Session

	Get the session of the cuds object.

	
property uid: Union[rdflib.term.URIRef, uuid.UUID]

	Get the uid of the CUDS object.

This is the public getter of the property.

	
update(*args: osp.core.cuds.Cuds) → List[osp.core.cuds.Cuds]

	Update the Cuds object.

Updates the object by providing updated versions of CUDS objects
that are directly in the container of this CUDS object.
The updated versions must be associated with a different session.

	Parameters

	args (Cuds) – The updated versions to use to update the current
object.

	Raises

	
	ValueError – Provided a CUDS objects is not in the container of the
 current CUDS

	ValueError – Provided CUDS object is associated with the same
 session as the current CUDS object. Therefore it is not an
 updated version.

	Returns

	
	The CUDS objects that have been updated,
	associated with the session of the current CUDS object.
Result type is a list, if more than one CUDS object is
returned.

	Return type

	Union[Cuds, List[Cuds]]

Ontology interface

	
class osp.core.ontology.namespace.OntologyNamespace(name, namespace_registry, iri)

	Bases: object

A namespace in the ontology.

	
__contains__(item)

	Check whether the given entity is part of the namespace.

	Parameters

	item (Union[str, rdflib.URIRef, OntologyEntity, rdflib.BNode]) – The name, IRI of an entity, the entity itself or a blank
node.

	Returns

	
	Whether the given entity name or IRI is part of the
	namespace. Blank nodes are never part of a namespace.

	Return type

	bool

	
__eq__(other)

	Check whether the two namespace objects are the same.

	Parameters

	other (OntologyNamespace) – The namespace to compare with.

	Returns

	Whether the given namespace is the same.

	Return type

	bool

	
__getattr__(name)

	Get an ontology entity from the registry by label or suffix.

	Parameters

	name (str) – The label or namespace suffix of the ontology entity.

	Raises

	AttributeError – Unknown label or suffix.

	Returns

	The ontology entity.

	Return type

	OntologyEntity

	
__getitem__(label)

	Get an ontology entity from the registry by label.

Useful for entities whose labels contains characters which are not
compatible with the Python syntax.

	Parameters

	label (str) – The label of the ontology entity.

	Raises

	KeyError – Unknown label.

	Returns

	The ontology entity.

	Return type

	OntologyEntity

	
__iter__()

	Iterate over the ontology entities in the namespace.

	Returns

	An iterator over the entities.

	Return type

	Iterator[OntologyEntity]

	
get(name, fallback=None)

	Get an ontology entity from the registry by suffix or label.

	Parameters

	
	name (str) – The label or suffix of the ontology entity.

	default (Any) – The value to return if it doesn’t exist.

	fallback (Any) – The fallback value, defaults to None.

	Returns

	The ontology entity

	Return type

	OntologyEntity

	
get_default_rel()

	Get the default relationship of the namespace.

	
get_from_iri(iri, _name=None)

	Get an ontology entity directly from its IRI.

For consistency, this method only returns entities from this namespace.

	Parameters

	
	iri (Union[str, rdlib.URIRef]) – The iri of the ontology entity.

	_name (str) – Not mean to be provided by the user. Just passed to
the from_iri method of the namespace registry.

	Returns

	The ontology entity.

	Return type

	OntologyEntity

	Raises

	KeyError – When the iri does not belong to the namespace.

	
get_from_suffix(suffix, case_sensitive=False)

	Get an ontology entity from its namespace suffix.

	Parameters

	
	suffix (str) – Suffix of the ontology entity.

	case_sensitive (bool) – Whether to search also for the same suffix
with different capitalization. By default,
such a search is performed.

	
get_iri()

	Get the IRI of the namespace.

	
get_name()

	Get the name of the namespace.

	
class osp.core.ontology.entity.OntologyEntity(namespace_registry, namespace_iri, name, iri_suffix)

	Bases: abc.ABC

Abstract superclass of any entity in the ontology.

	
property description

	Get the description of the entity.

	Returns

	The description of the entity

	Return type

	str

	
property direct_subclasses

	Get the direct subclasses of the entity.

	Returns

	The direct subclasses of the entity

	Return type

	Set[OntologyEntity]

	
property direct_superclasses

	Get the direct superclass of the entity.

	Returns

	The direct superclasses of the entity

	Return type

	List[OntologyEntity]

	
get_triples()

	Get the triples of the entity.

	
property iri

	Get the IRI of the Entity.

	
is_subclass_of(other)

	Perform a subclass check.

	Parameters

	other (Entity) – The other entity.

	Returns

	Whether self is a subclass of other.

	Return type

	bool

	
is_superclass_of(other)

	Perform a superclass check.

	Parameters

	other (Entity) – The other entity.

	Returns

	Whether self is a superclass of other.

	Return type

	bool

	
property name

	Get the name of the entity.

	
property namespace

	Get the namespace object of the entity.

	
property subclasses

	Get the subclasses of the entity.

	Returns

	The direct subclasses of the entity

	Return type

	Set[OntologyEntity]

	
property superclasses

	Get the superclass of the entity.

	Returns

	The direct superclasses of the entity

	Return type

	Set[OntologyEntity]

	
property tblname

	Get the name used in storage backends to store instances.

	
class osp.core.ontology.oclass.OntologyClass(namespace_registry, namespace_iri, name, iri_suffix)

	Bases: osp.core.ontology.entity.OntologyEntity

A class defined in the ontology.

	
property attributes

	Get all the attributes of this oclass.

	Returns

	Mapping from attribute to default

	Return type

	Dict[OntologyAttribute, Any]

	
property axioms

	Get all the axioms for the ontology class.

Include axioms of superclasses.

	Returns

	The list of axioms for the ontology class.

	Return type

	List[Restriction]

	
get_attribute_by_argname(name)

	Get the attribute object with the argname of the object.

	Parameters

	name (str) – The argname of the attribute

	Returns

	The attribute

	Return type

	OntologyAttribute

	
get_attribute_identifier_by_argname(name)

	Get the attribute identifier with the argname of the object.

	Parameters

	name (str) – The argname of the attribute

	Returns

	The attribute identifier.

	Return type

	Identifier

	
property own_attributes

	Get the non-inherited attributes of this oclass.

	Returns

	Mapping from attribute to default

	Return type

	Dict[OntologyAttribute, str]

	
class osp.core.ontology.oclass_restriction.Restriction(bnode, namespace_registry)

	Bases: object

A class to represet restrictions on ontology classes.

	
property attribute

	The attribute the restriction acts on.

Only for ATTRIBUTE_RESTRICTIONs.

	Raises

	AttributeError – self is a RELATIONSHIP_RESTRICTIONs.

	Returns

	The datatype of the attribute.

	Return type

	UriRef

	
property quantifier

	Get the quantifier of the restriction.

	Returns

	The quantifier of the restriction.

	Return type

	QUANTIFIER

	
property relationship

	The relationship the RELATIONSHIP_RESTRICTION acts on.

	Raises

	AttributeError – Called on an ATTRIBUTE_RESTRICTION.

	Returns

	The relationship the restriction acts on.

	Return type

	OntologyRelationship

	
property rtype

	Return the type of restriction.

Whether the restriction acts on attributes or relationships.

	Returns

	The type of restriction.

	Return type

	RTYPE

	
property target

	The target ontology class or datatype.

	Returns

	The target class or datatype.

	Return type

	Union[OntologyClass, UriRef]

	
class osp.core.ontology.oclass_composition.Composition(bnode, namespace_registry)

	Bases: object

Combine multiple classes using logical formulae.

	
property operands

	The individual classes the formula is composed of.

	Returns

	The operands.

	Return type

	Union[OntologyClass, Composition, Restriction]

	
property operator

	The operator that connects the different classes in the formula.

	Returns

	The operator Enum.

	Return type

	OPERATOR

	
class osp.core.ontology.relationship.OntologyRelationship(namespace_registry, namespace_iri, name, iri_suffix)

	Bases: osp.core.ontology.entity.OntologyEntity

A relationship defined in the ontology.

	
property inverse

	Get the inverse of this relationship.

If it doesn’t exist, add one to the graph.

	Returns

	The inverse relationship.

	Return type

	OntologyRelationship

	
class osp.core.ontology.attribute.OntologyAttribute(namespace_registry, namespace_iri, name, iri_suffix)

	Bases: osp.core.ontology.entity.OntologyEntity

An attribute defined in the ontology.

	
property argname

	Get the name of the attribute when used as an argument.

This name is used when construction a cuds object or accessing
the attributes of a CUDS object.

	
convert_to_basic_type(value)

	Convert from the datatype of the value to a python basic type.

	Parameters

	value (Any) – The value to convert

	Returns

	The converted value

	Return type

	Any

	
convert_to_datatype(value)

	Convert to the datatype of the value.

	Parameters

	value (Any) – The value to convert

	Returns

	The converted value

	Return type

	Any

	
property datatype

	Get the datatype of the attribute.

	Returns

	IRI of the datatype

	Return type

	URIRef

	Raises

	RuntimeError – More than one datatype associated with the attribute.
 # TODO should be allowed

Sessions

	
class osp.core.session.session.Session

	Bases: abc.ABC

Abstract Base Class for all Sessions.

Defines the common standard API and sets the registry.

	
close()

	Close the connection to the backend.

	
delete_cuds_object(cuds_object)

	Remove a CUDS object.

Will not delete the cuds objects contained.

	Parameters

	cuds_object (Cuds) – The CUDS object to be deleted

	
prune(rel=None)

	Remove all elements not reachable from the sessions root.

Only consider given relationship and its subclasses.

	Parameters

	rel (Relationship, optional) – Only consider this relationship to
calculate reachability.. Defaults to None.

	
class osp.core.session.core_session.CoreSession

	Bases: osp.core.session.session.Session, osp.core.session.sparql_backend.SPARQLBackend

Core default session for all objects.

	
class CoreSessionSparqlBindingSet(row, session)

	Bases: osp.core.session.sparql_backend.SparqlBindingSet

A row in the result. Mapping from variable to value.

	
class CoreSessionSparqlResult(query_result, session)

	Bases: osp.core.session.sparql_backend.SparqlResult

The result of a SPARQL query on the core session.

	
close()

	Close the connection.

	
class osp.core.session.wrapper_session.WrapperSession(engine)

	Bases: osp.core.session.session.Session

Common class for all wrapper sessions.

Sets the engine and creates the sets with the changed elements

	
static compute_auth(username, password, handshake)

	Will be called on the client, after the handshake.

This method should produce an object that is able to authenticate
the user.
The __init__() method of the session should have a keyword “auth”,
that will have the output of this function as a value.
–> The user can be authenticated on __init__()

	Parameters

	
	username (str) – The username as encoded in the URI.

	password (str) – The password as encoded in the URI.

	handshake (Any) – The result of the hanshake method.

	Returns

	Any JSON serializable object that is able to authenticate
the user.

	Return type

	Any

	
expire(*cuds_or_uids)

	Let cuds_objects expire.

Expired objects will be reloaded lazily
when attributed or relationships are accessed.

	Parameters

	
	*cuds_or_uids (Union[Cuds, UUID, URIRef]) – The cuds_object

	expire. (or uids to) –

	Returns

	The set of uids that became expired

	Return type

	Set[UUID]

	
expire_all()

	Let all cuds_objects of the session expire.

Expired objects will be reloaded lazily
when attributed or relationships are accessed.

	Returns

	The set of uids that became expired

	Return type

	Set[UUID]

	
static handshake(username, connection_id)

	Will be called on the server, before anything else.

Result of this method will be fed into compute_auth() below,
that will be executed by the client.

	Parameters

	
	username (str) – The username of the user, as encoded in the URL.

	connection_id (UUID) – A UUID for the connection.

	Returns

	
	Any JSON serializable object that should be fed into
	compute_auth().

	Return type

	Any

	
log_buffer_status(context)

	Log the current status of the buffers.

	Parameters

	context (BufferContext) – whether to print user or engine buffers

	
refresh(*cuds_or_uids)

	Refresh cuds_objects.

Load possibly updated data of cuds_object from the backend.

	Parameters

	*cuds_or_uids (Union[Cuds, UUID]) – The cuds_object or uids to
refresh.

	
class osp.core.session.sim_wrapper_session.SimWrapperSession(engine, **kwargs)

	Bases: osp.core.session.wrapper_session.WrapperSession

Abstract class used for simulation sessions.

Contains methods necessary for all simulation sessions.

	
class osp.core.session.db.db_wrapper_session.DbWrapperSession(engine)

	Bases: osp.core.session.wrapper_session.WrapperSession

Abstract class for a DB Wrapper Session.

	
abstract close()

	Close the connection to the database.

	
static compute_auth(username, password, handshake)

	Will be called on the client, after the handshake.

This method should produce an object that is able to authenticate
the user.
The __init__() method of the session should have a keyword “auth”,
that will have the output of this function as a value.
–> The user can be authenticated on __init__()

	Parameters

	
	username (str) – The username as encoded in the URI.

	password (str) – The password as encoded in the URI.

	handshake (Any) – The result of the hanshake method.

	Returns

	Any JSON serializable object that is able to authenticate
the user.

	Return type

	Any

	
class osp.core.session.db.sql_wrapper_session.SqlWrapperSession(engine)

	Bases: osp.core.session.db.triplestore_wrapper_session.TripleStoreWrapperSession

Abstract class for an SQL DB Wrapper Session.

	
check_schema()

	Raise an error if sql session has data in not-supported.

	Parameters

	() (sql_session) – [description]

	Raises

	RuntimeError – [description]

Registry

	
class osp.core.session.registry.Registry

	Bases: dict

A dictionary that contains all local CUDS objects.

	
filter(criterion)

	Filter the registry.

Return a dictionary that is
a subset of the registry. It contains only cuds objects
that satisfy the given criterion.

	Parameters

	criterion (Callable[Cuds, bool]) – A function that decides whether
a cuds object should be returned. If the function returns True
on a cuds object it means the cuds object satisfies the
criterion.

	Returns

	
	dict contains the cuds objects
	satisfying the criterion.

	Return type

	Dict[Union[UUID, URIRef], Cuds]

	
filter_by_attribute(attribute, value)

	Filter by attribute and value.

	Parameters

	
	attribute (str) – The attribute to look for.

	value (Any) – The corresponding value to look for.

	Returns

	
	A subset of the registry,
	containing cuds objects with given attribute and value.

	Return type

	Dict[Union[UUID, URIRef], Cuds]

	
filter_by_oclass(oclass)

	Filter the registry by ontology class.

	Parameters

	oclass (OntologyClass) – The oclass used for filtering.

	Returns

	
	A subset of the registry,
	containing cuds objects with given ontology class.

	Return type

	Dict[Union[UUID, URIRef], Cuds]

	
filter_by_relationships(relationship, consider_subrelationships=False)

	Filter the registry by relationships.

Return cuds objects containing the given relationship.

	Parameters

	
	relationship (OntologyRelationship) – The relationship to filter by.

	consider_subrelationships (bool, optional) – Whether to return CUDS
objects containing subrelationships of the given relationship.
Defaults to False.

	Returns

	
	A subset of the registry,
	containing cuds objects with given relationship.

	Return type

	Dict[Union[UUID, URIRef], Cuds]

	
get(uid)

	Return the object corresponding to a given uid.

	Parameters

	uid (Union[UUID, URIRef]) – The uid of the desired
object.

	Raises

	ValueError – Unsupported key provided (not a uid object).

	Returns

	Cuds object with the uid.

	Return type

	Cuds

	
get_subtree(root, subtree=None, rel=None, skip=None, warning=None)

	Get all the elements in the subtree rooted at given root.

Only use the given relationship for traversal.

	Parameters

	
	root (Union[UUID, URIRef, Cuds]) – The root of the subtree.

	rel (Relationship, optional) – The relationship used for traversal.
Defaults to None. Defaults to None.

	subtree (Set[Cuds]) – Currently calculated subtree (this is a
recursive algorithm).

	skip (Set[Cuds], optional) – The elements to skip. Defaults to None.
Defaults to None.

	warning (LargeDatasetWarning, optional) – Raise a
LargeDatasetWarning when the subtree is large. When None,
no warning is raised. If you wish to raise the warning, a
LargeDatasetWarning object must be provided.

	Returns

	
	The set of elements in the subtree rooted in the given
	uid.

	Return type

	Set[Cuds]

	
prune(*roots, rel=None)

	Remove all elements in the registry that are not reachable.

	Parameters

	rel (Relationship, optional) – Only consider this relationship.
Defaults to None.

	Returns

	The set of removed elements.

	Return type

	List[Cuds]

	
put(cuds_object)

	Add an object to the registry.

	Parameters

	cuds_object (Cuds) – The cuds_object to put in the registry.

	Raises

	ValueError – Unsupported object provided (not a Cuds object).

	
reset()

	Delete the contents of the registry.

Utilities

	
class osp.core.utils.Cuds2dot(root)

	Utility for creating a dot and png representation of CUDS objects.

	
render(filename=None, **kwargs)

	Create the graph and save it to a dot and png file.

	
static shorten_uid(uid)

	Shortens the string of a given uid.

	Parameters

	uid (UUID) – uuid to shorten.

	Returns

	8 first and 3 last characters separated by ‘…’.

	Return type

	str

	
osp.core.utils.branch(cuds_object, *args, rel=None)

	Like Cuds.add(), but returns the element you add to.

This makes it easier to create large CUDS structures.

	Parameters

	
	cuds_object (Cuds) – the object to add to.

	args (Cuds) – object(s) to add

	rel (OntologyRelationship) – class of the relationship between the
objects.

	Raises

	ValueError – adding an element already there.

	Returns

	The first argument.

	Return type

	Cuds

	
osp.core.utils.change_oclass(cuds_object, new_oclass, kwargs, _force=False)

	Change the oclass of a cuds object.

Only allowed if cuds object does not have any neighbors.

	Parameters

	
	cuds_object (Cuds) – The cuds object to change the oclass of

	new_oclass (OntologyClass) – The new oclass of the cuds object

	kwargs (Dict[str, Any]) – The keyword arguments used to instantiate
cuds object of the new oclass.

	Returns

	The cuds object with the changed oclass

	Return type

	Cuds

	
osp.core.utils.check_arguments(types, *args)

	Check that the arguments provided are of the certain type(s).

	Parameters

	
	types (Union[Type, Tuple[Type]]) – tuple with all the allowed types

	args (Any) – instances to check

	Raises

	TypeError – if the arguments are not of the correct type

	
osp.core.utils.clone_cuds_object(cuds_object)

	Avoid that the session gets copied.

	Returns

	A copy of self with the same session.

	Return type

	Cuds

	
osp.core.utils.create_from_cuds_object(cuds_object, session)

	Create a copy of the given cuds_object in a different session.

WARNING: Will not recursively copy children.

	Parameters

	
	cuds_object (Cuds) – The cuds object to copy

	session (Session) – The session of the new Cuds object

	Returns

	A copy of self with the given session.

	Return type

	Cuds

	
osp.core.utils.create_from_triples(triples, neighbor_triples, session, fix_neighbors=True)

	Create a CUDS object from triples.

	Parameters

	
	triples (List[Tuple]) – The list of triples of the CUDS object to
create.

	neighbor_triples (List[Tuple]) – A list of important triples of
neighbors, most importantly their types.

	session (Session) – The session to create the CUDS object in.

	fix_neighbors (bool) – Whether to remove the link from the old neighbors
to this cuds object, defaults to True.

	
osp.core.utils.create_recycle(oclass, kwargs, session, uid, fix_neighbors=True, _force=False)

	Instantiate a cuds_object with a given session.

If cuds_object with same uid is already in the session,
this object will be reused.

	Parameters

	
	oclass (Cuds) – The OntologyClass of cuds_object to instantiate

	kwargs (Dict[str, Any]) – The kwargs of the cuds_object

	session (Session) – The session of the new Cuds object

	uid (Union[UUID, URIRef) – The uid of the new Cuds object

	fix_neighbors (bool) – Whether to remove the link from the old neighbors
to this cuds object, defaults to True

	_force (bool) – Skip sanity checks.

	Returns

	The created cuds object.

	Return type

	Cuds

	
osp.core.utils.delete_cuds_object_recursively(cuds_object, rel=<OntologyRelationship cuba.activeRelationship>, max_depth=inf)

	Delete a cuds object and all the object inside of the container of it.

	Parameters

	
	cuds_object (Cuds) – The CUDS object to recursively delete.

	rel (OntologyRelationship, optional) – The relationship used for
traversal. Defaults to cuba.activeRelationship.

	max_depth (int, optional) – The maximum depth of the recursion.
Defaults to float(“inf”). Defaults to float(“inf”).

	
osp.core.utils.export_cuds(cuds_or_session: typing.Optional = None, file: typing.Optional[typing.Union[str, typing.TextIO]] = None, format: str = 'text/turtle', rel: osp.core.ontology.relationship.OntologyRelationship = <OntologyRelationship cuba.activeRelationship>, max_depth: float = inf) → Optional[str]

	Exports CUDS in a variety of formats (see the format argument).

	Parameters

	
	cuds_or_session (Union[Cuds, Session], optional) – the
(Cuds) CUDS object to export, or
(Session) a session to serialize all of its CUDS objects.
If no item is specified, then the current session is exported.

	file (str, optional) – either,
(str) a path, to save the CUDS objects or,
(TextIO) any file-like object (in string mode) that provides a
write() method. If this argument is not specified, a string with
the results will be returned instead.

	format (str) – the target format. Defaults to triples in turtle syntax.

	rel (OntologyRelationship) – the ontology relationship to use as
containment relationship when exporting CUDS.

	max_depth (float) – maximum depth to search for children CUDS.

	
osp.core.utils.get_neighbor_diff(cuds1, cuds2, mode='all')

	Get the ids of neighbors of cuds1 which are no neighbors in cuds2.

Furthermore get the relationship the neighbors are connected with.
Optionally filter the considered relationships.

	Args;
	cuds1 (Cuds): A Cuds object.
cuds2 (Cuds): A Cuds object.
mode (str): one of “all”, “active”, “non-active”, whether to consider

only.

active or non-active relationships.

	Returns

	
	List of Tuples that
	contain the found uids and relationships.

	Return type

	List[Tuple[Union[UUID, URIRef], Relationship]]

	
osp.core.utils.get_relationships_between(subj, obj)

	Get the set of relationships between two cuds objects.

	Parameters

	
	subj (Cuds) – The subject

	obj (Cuds) – The object

	Returns

	
	The set of relationships between subject
	and object.

	Return type

	Set[OntologyRelationship]

	
osp.core.utils.import_cuds(path_or_filelike: Union[str, TextIO, dict, List[dict]], session: Optional = None, format: str = None)

	Imports CUDS in various formats (see the format argument).

	Parameters

	
	path_or_filelike (Union[str, TextIO], optional) – either,
(str) the path of a file to import;
(Union[List[dict], dict]) a dictionary representing the contents of

a json file;

(TextIO) any file-like object (in string mode) that provides a
read() method. Note that it is possible to get such an object
from any str object using the python standard library. For
example, given the str object string, import io;
filelike = io.StringIO(string) would create such an object.
If not format is specified, it will be guessed.

	session (Session) – the session in which the imported data will be
stored.

	format (str, optional) – the format of the content to import. The
supported formats are json and the ones supported by RDFLib. See
https://rdflib.readthedocs.io/en/latest/plugin_parsers.html.
If no format is specified, then it will be guessed. Note that in
some specific cases, the guess may be wrong. In such cases, try
again specifying the format.

Returns (List[Cuds]): a list of cuds objects.

	
osp.core.utils.post(url, cuds_object, rel=<OntologyRelationship cuba.activeRelationship>, max_depth=inf)

	Will send the given CUDS object to the given URL.

Will also send the CUDS object in the container recursively.

	Parameters

	
	url (string) – The URL to send the CUDS object to

	cuds_object (Cuds) – The CUDS to send

	max_depth (int, optional) – The maximum depth to send CUDS objects
recursively. Defaults to float(“inf”).

	Returns

	Server response

	
osp.core.utils.pretty_print(cuds_object, file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

	Print the given cuds_object in a human readable way.

The uuid, the type, the ancestors and the description and the contents
is printed.

	Parameters

	
	cuds_object (Cuds) – container to be printed.

	file (TextIOWrapper) – The file to print to.

	
osp.core.utils.remove_cuds_object(cuds_object)

	Remove a cuds_object from the data structure.

Removes the relationships to all neighbors.
To delete it from the registry you must call the
sessions prune method afterwards.

	Parameters

	cuds_object (Cuds) – The cuds_object to remove.

	
osp.core.utils.sparql(query_string: str, session: Optional = None)

	Performs a SPARQL query on a session (if supported by the session).

	Parameters

	
	query_string (str) – A string with the SPARQL query to perform.

	session (Session, optional) – The session on which the SPARQL query
will be performed. If no session is specified, then the current
default session is used. This means that, when no session is
specified, inside session with statements, the query will be
performed on the session associated with such statement, while
outside, it will be performed on the OSP-core default session,
the core session.

	Returns

	
	A SparqlResult object, which can be iterated to obtain
	the output rows. Then for each row, the value for each query
variable can be retrieved as follows: row[‘variable’].

	Return type

	SparqlResult

	Raises

	NotImplementedError – when the session does not support SPARQL queries.

pico

Pico is a commandline tool used to install ontologies.

	
osp.core.pico.install(*files: str, overwrite: bool = False) → None

	Install ontologies.

	Parameters

	
	files – Paths of yml files describing the ontologies to install.

	overwrite – Whether to overwrite already installed ontologies.

	
osp.core.pico.namespaces() → Iterator[OntologyNamespace]

	Returns namespace objects for all the installed namespaces.

	
osp.core.pico.packages() → Iterator[str]

	Returns the names of all installed packages.

	
osp.core.pico.uninstall(*package_names: str) → None

	Uninstall ontologies.

	Parameters

	package_names – Names of the ontology packages to uninstall.

 Contribute

Contribute

This section aims to explain how we develop and organise,
in order to help those that want to contribute to SimPhoNy.

Background

Tools

The following are some of the technologies and concepts we use regularly.
It might be useful to become familiar with them:

	Version control: Git [https://git-scm.com/],
GitHub [https://github.com/about] and
GitLab [https://about.gitlab.com/]

	Unittest [https://docs.python.org/3/library/unittest.html]

	Continuous integration

	Python virtual environments/conda [https://docs.conda.io]

	Docker [https://www.docker.com/resources/what-container/]

	Benchmarks

Code Organisation

There are 3 main categories of repos:

	OSP-core [https://github.com/simphony/osp-core] contains the nucleus of
SimPhoNy, the base on which the wrappers build.

	Each wrapper will be in its own repository on GitHub or GitLab,
mimicking
wrapper_development [https://github.com/simphony/wrapper-development].

	docs [https://github.com/simphony/docs]
holds the source for this documentation.

There are also 4 types of branches:

	master/main contains all the releases, and should always be stable.

	dev holds the code for the newest release that is being developed.

	issue branch is where an specific issue is being solved.

	hotfix branch is where a critical software bug detected on the stable
release (more on this later) is being solved.

All wrappers and OSP-core are part of a common directory structure:

	osp/: contains all the SimPhoNy source code.

	core/: OSP-core source code.

	wrappers/: wrappers source code.

	wrapper_xyz/: one folder per wrapper implementation.

	tests/: unittests of the code.

	examples/: simple examples of how to use a certain feature.

Developing workflow

	Every new feature or bug is defined in an issue and labelled accordingly.
If there is something that is missing or needs improving,
make an issue in the appropriate project.

	Generally, the issues are fixed by creating a new issue branch from the
dev branch, committing to that branch and making a new Pull/Merge
Request when done. An owner of the project should be tagged for review.
They will review and merge the PR if the fix is correct, deleting the
issue branch afterwards. The changes should be clearly explained in the
issue/Pull Request.

Warning

If the issue is a critical software bug detected in the stable release, a
hotfix branch should be created from the master/main branch
instead.

After committing to such branch, a new Pull/Merge request (targeting
dev) should be created. If the fix is correct, the project owner
will merge the PR to dev, additionally merge the
hotfix branch to master/main, and then delete the
hotfix branch.

	Once the features for a release have been reached, dev will be merged to
master/main. Every new commit in the master/main branch generally
corresponds to a new release, which is labelled with a
git tag [https://git-scm.com/book/en/v2/Git-Basics-Tagging] matching its
version number. An exception to this rule may apply, for example when
several critical hotfixes are applied in a row, as it would then be
better to just to publish a single release afterwards. In regard to
version numbering, we adhere to the
Semantic versioning [https://semver.org/] rules.

In the next image it can be seen how the branches usually look during this
workflow, and the different commits used to synchronise them:

[image:]

Coding

Documenting

	All code must be properly documented with meaningful comments.

	For readability, we now follow the
Google docstring format [https://google.github.io/styleguide/pyguide.html#s3.8-comments-and-docstrings].

	If some behaviour is very complex, in-line comments can be used.
However, proper naming and clear operations are always preferred.

Code style

	Code should follow
PEP8 code style conventions [https://peps.python.org/pep-0008/].

	All Python code should be validated by the
Flake8 [https://github.com/pycqa/flake8] tool. The validation is also
enforced on the repository by the
continuous integration. Click
here [https://github.com/simphony/osp-core/blob/master/.github/workflows/ci.yml#L12]
to see the specific options with which Flake8 is launched.

	All Python code should be reformatted with
black [https://github.com/psf/black] and
isort [https://github.com/PyCQA/isort]. The use of said tools is
enforced by the
continuous integration. Therefore,
we strongly recommend that you use the
configuration file [https://github.com/simphony/osp-core/blob/master/.pre-commit-config.yaml]
bundled with the repository to
install [https://pre-commit.com/#installation] the
pre-commit framework [https://pre-commit.com/], that automates the task
using git pre-commit hooks.

	A few
other style conventions [https://github.com/simphony/osp-core/blob/master/.pre-commit-config.yaml]
are also enforced by the continuous integration through
pre-commit [https://pre-commit.com/] (such as empty lines at the end of
text files). If you decide not to use it, the CI will let you know what
to correct.

Testing

	All complex functionality must be tested.

	If some implementation can not be checked through unittest, it should be
at least manually run in different systems to assure an expected behaviour.

Continuous Integration

	We currently run the CI through Github Actions/GitLab CI.

	Code style conventions are enforced through the use of Flake8, black, isort,
and various
pre-commit [https://pre-commit.com/]
hooks [https://github.com/simphony/osp-core/blob/master/.pre-commit-config.yaml].

	Tests are automatically run for all pull requests.

	For the OSP-core code, benchmarks are run after every merge to dev.
Benchmark results are available
here [https://simphony.github.io/osp-core/dev/bench/index.html]. The CI
will report a failure when a benchmark is 50% slower than in the previous
run, in addition to automatically commenting on the commit.

Naming conventions

	Use cuds_object as the argument name of your methods (not entity,
cuds, cuds_instance…).

	The official spelling is OSP-core (as opposed to osp core, OSP-Core
or similar).

Contribute to OSP-core

If you are not a member of the
SimPhoNy organisation [https://github.com/simphony], rather than creating
a branch from dev, you will have to fork the repository and create the
Pull Request.

Contribute to wrapper development

For a sample wrapper, visit the
wrapper_development [https://github.com/simphony/wrapper-development] repo.

README files should include:

	Information regarding the purpose of the wrapper and the backend used.

	A compatibility matrix with OSP-core.

	Installation instructions.

	Folder structure.

	Any other necessary information for users and other developers.

Contribute to the docs

If you have any suggestion for this documentation, whether it is something
that needs more explanation, is inaccurate or simply a note on anything
that could be improved, you can open an issue
here [https://github.com/simphony/docs/issues], and we will look into it!.

 Detailed design

Detailed design

Here we will give an in-depth view of the design of the 3 layers.

For a more general overview, go to general architecture.

[image: skinparam { Shadowing false BackgroundColor transparent ClassBackgroundColor #E3E3E3 ClassBorderColor black ActorBackgroundColor transparent ActorBorderColor #179c7d InterfaceBackgroundColor transparent InterfaceBorderColor #179c7d DatabaseBackgroundColor transparent DatabaseBorderColor #179c7d PackageBorderColor black PackageBackgroundColor #9FC6DE ArrowColor #179c7d } allow_mixing actor User circle pico rectangle SemanticLayer { class Cuds { Session session UUID uuid OntologyEntity oclass -- add() : Cuds get() : Cuds remove() : void update() : void iter() : Iterator<Cuds> } abstract class OntologyEntity { String name URIRef iri String tblname OntologyNamespace namespace Set direct_superclasses Set direct_subclasses Set superclasses Set subclasses String description -- get_triples() : triple is_superclass_of() : bool is_subclass_of() : bool } class OntologyClass implements OntologyEntity { Dict attributes Dict own_attributes } class OntologyRelationship implements OntologyEntity { OntologyRelationship inverse } class OntologyAttribute implements OntologyEntity { URIRef datatype -- convert_to_datatype() : Any convert_to_basic_type() : Any } class OntologyNamespace { -- get_iri() : URIRef get_default_rel() : OntologyRelationship get() : OntologyEntity } class NamespaceRegistry { -- get() : OntologyNamespace update_namespaces() : void from_iri() : OntologyEntity clear() : Graph store() : void load() : void } } rectangle InteroperabilityLayer { class Registry <dict> { } abstract class Session { Registry : registry -- store() : void load() : Cuds sync() : void } class SomeWrapperSession implements Session { List added List updated List removed SyntacticLayer syntactic -- } } rectangle SyntacticLayer { class SyntacticLayer { } } database backend ' ----------------------- ' ------ RELATIONS ------ ' ----------------------- User -up-> OntologyClass : interacts_with Cuds -left> OntologyClass : instance_of OntologyEntity -> OntologyNamespace : part_of OntologyNamespace -> NamespaceRegistry : contained_in OntologyClass -left> OntologyAttribute : has pico -> NamespaceRegistry : manages Cuds -> Session : has_a Session -> Registry : manages SomeWrapperSession -> SyntacticLayer : manages SyntacticLayer -> backend : acts_on OntologyRelationship -[hidden]> OntologyAttribute]

Standard design

Semantic layer

The semantic layer is the representation of the classes of the ontology in a programming language.

When the user installs an ontology through pico,
all ontology concepts are saved in a graph in ~/.osp_ontologies.

The procedure is as follows:

	The OntologyInstallationManager receives a list of yml files with ontologies to install.

	It instantiates a Parser.

	The parser goes through the ontologies and creates an OntologyClass per entity.

	All the oclasses of the same namespace are grouped in an OntologyNamespace.

	All the registries are collected in the NamespaceRegistry.

Installing new ontologies loads the graph and adds new namespaces or modifies the existing ones.

When a class is instantiated, an individual is created.
The graph is read, and an instance of the Cuds class with the ontology information is created.

Through the Cuds they realise the Cuds API which enables the user to work with them in a generic, simple way.

Cuds

Location: osp.core.cuds

It is the base class for all instances.
Besides whatever might have been defined in the ontology, they all have 3 basic attributes:

	uid: instance of uuid.UUID, it serves to uniquely identify an instance.

	session: this is the link to the interoperability layer.
By default all objects are in the CoreSession, unless they are in a wrapper.

	oclass: indicates the ontology class they originate from.

Cuds structure

Each cuds object contains the uids and oclass of the directly related entities,
as well as the relationship that connects them.
The actual related objects are kept in the registry.

 a_cuds_object := {
 Relation1: {uid1: oclass, uid2: oclass},
 Relation2: {uid4: oclass},
 Relation3: {uid3: oclass, uid5: oclass},
 }

Note

This is an abstraction to show the general structure.
The actual implementation is a bit more complex.

Cuds API

The governing idea behind the API design was to simplify as much as possible the usage.

This CRUD API is defined by 6 methods:

Create

from osp.core.namespaces import some_namespace

ontology_class = some_namespace.OntologyClass
relationship = some_namespace.relationship
cuds_obj = some_namespace.OntologyClass()

Add

These will also add the opposed relationship to the new contained cuds object
cuds_obj.add(*other_cuds, rel=relationship)
cuds_obj.add(yet_another_cuds) # Uses default relationship from ontology

The flow of information for the call of the add method would be:

[image: skinparam { Shadowing false BackgroundColor transparent sequenceBoxBackgroundColor #9FC6DE sequenceBoxBorderColor black ActorBackgroundColor transparent ActorBorderColor #179c7d ParticipantBackgroundColor #E3E3E3 ParticipantBorderColor black DatabaseBackgroundColor transparent DatabaseBorderColor #179c7d SequenceLifeLineBorderColor #179c7d ArrowColor #179c7d } actor user box "Semantic Layer" participant "cuds" as cuds end box box "Interoperability Layer" participant "session" as sess end box box "Syntactic Layer" participant "engine" as eng end box database "backend" as back user -> cuds: add cuds <- sess: load cuds -> sess: store]

add method call

As you can see, the information is sent to the next layer, but not all the way to the backend.
This will be propagated when the user calls session.run() or session.commit.
The registry is checked for a pre-existing object, in case something that is already there is being added.

Get

Returns a list, unless only one uid was given
cuds_obj.get() # All the contained cuds objects
cuds_obj.get(rel=relationship) # Entities under that relationship
cuds_obj.get(*uids) # Searches elements for the uids
cuds_obj.get(*uids, rel=relationship) # Faster, filters by relationship
cuds_obj.get(oclass=ontology_class) # Elements of that class
cuds_obj.get(rel=relationship, oclass=ontology_class) # Filters by rel and oclass

In this case, the calls carried out by the get method are as follows:

[image: skinparam { Shadowing false BackgroundColor transparent sequenceBoxBackgroundColor #9FC6DE sequenceBoxBorderColor black ActorBackgroundColor transparent ActorBorderColor #179c7d ParticipantBackgroundColor #E3E3E3 ParticipantBorderColor black DatabaseBackgroundColor transparent DatabaseBorderColor #179c7d SequenceLifeLineBorderColor #179c7d ArrowColor #179c7d } actor user box "Semantic Layer" participant "cuds" as cuds end box box "Interoperability Layer" participant "session" as sess end box box "Syntactic Layer" participant "engine" as eng end box database "backend" as back user -> cuds: get cuds -> sess: load == Object not in registry == sess -> eng: _load_from_backend eng -> back: <get info> back --> eng: <info> eng --> sess: <info> == Object in registry == sess --> cuds: object cuds --> user: object]

get method call

Now the backend is contacted to make sure the user receives the latest
available version of the objects being queried.
This is done through _load_from_backend().

Update

Objects to update must exist already
cuds_obj.update(*cuds_objs)

A simple update call triggers the following behaviour:

[image: skinparam { Shadowing false BackgroundColor transparent sequenceBoxBackgroundColor #9FC6DE sequenceBoxBorderColor black ActorBackgroundColor transparent ActorBorderColor #179c7d ParticipantBackgroundColor #E3E3E3 ParticipantBorderColor black DatabaseBackgroundColor transparent DatabaseBorderColor #179c7d SequenceLifeLineBorderColor #179c7d ArrowColor #179c7d } actor user box "Semantic Layer" participant "cuds" as cuds end box box "Interoperability Layer" participant "session" as sess end box box "Syntactic Layer" participant "engine" as eng end box database "backend" as back user -> cuds: update cuds <- sess: load() cuds -> sess: store()]

update method call

You can see the calls are very much the same as with the add method.
The difference is that the update requires the object to be there previously.
And so the object is first loaded from the registry, then updated and stored.

Remove

These will trigger the update in the opposed relationship of the erased element
cuds_obj.remove() # Remove all
cuds_obj.remove(*uids/cuds_objs) # Remove objects with the given uids
cuds_obj.remove(*uids/cuds_objs, rel=relationship) # Faster, filters by relationship
cuds_obj.remove(rel=relationship) # Delete all elements under a relationship
cuds_obj.remove(oclass=ontology_class) # Delete all elements of a certain class
cuds_obj.remove(rel=relationship, oclass=ontology_class) # Delete filtering by rel and oclass

The sequence for a simple remove is:

[image: skinparam { Shadowing false BackgroundColor transparent sequenceBoxBackgroundColor #9FC6DE sequenceBoxBorderColor black ActorBackgroundColor transparent ActorBorderColor #179c7d ParticipantBackgroundColor #E3E3E3 ParticipantBorderColor black DatabaseBackgroundColor transparent DatabaseBorderColor #179c7d SequenceLifeLineBorderColor #179c7d ArrowColor #179c7d } actor user box "Semantic Layer" participant "cuds" as cuds end box box "Interoperability Layer" participant "session" as sess end box box "Syntactic Layer" participant "engine" as eng end box database "backend" as back user -> cuds: remove cuds <- sess: load() cuds -> cuds: remove_rel()]

remove method call

Here the registry is accessed to fetch the neighbours of the removed object
and delete their links (relationships) to it.

Iterate

cuds_obj.iter() # Iterates through all
cuds_obj.iter(oclass=ontology_class) # Iterates filtering by the ontology class
cuds_obj.iter(rel=relationship) # Iterates filtering by the relationship

The general behaviour of the iter is:

[image: skinparam { Shadowing false BackgroundColor transparent sequenceBoxBackgroundColor #9FC6DE sequenceBoxBorderColor black ActorBackgroundColor transparent ActorBorderColor #179c7d ParticipantBackgroundColor #E3E3E3 ParticipantBorderColor black DatabaseBackgroundColor transparent DatabaseBorderColor #179c7d SequenceLifeLineBorderColor #179c7d ArrowColor #179c7d } actor user box "Semantic Layer" participant "cuds" as cuds end box box "Interoperability Layer" participant "session" as sess end box box "Syntactic Layer" participant "engine" as eng end box database "backend" as back user -> cuds: iterate cuds <- sess: load() cuds -> user: yield(object)]

iter method call

First the uids of all the objects to be iterated are gathered,
and then they are yielded like a generator

Hint

There is also an is_a method for checking oclass inheritance.

Note

Be aware that the sequence diagrams shown represent simple use cases,
and more complex scenarios are also possible (e.g. adding an object with children).

Interoperability layer

The interoperability layer takes care of the connection and translation between the semantic and syntactic parts.
It also contains the storage of all the objects that share a session.

Registry

Location: osp.core.session.registry

This flat datastructure stores all the objects in the same workspace (session) by their uid.
It is accessed through the session, and invisible to the user.

It also has functionality for pruning, resetting, or filtering its elements.

Session

Location: osp.core.session

The main purpose of session objects is to propagate the changes introduced by the user (and stored in the registry)
to the backend, and update the registry with the modifications coming from the backend.

The backend is accessed via the Syntactic layer, through the _engine property.

To simplify and group functionality, we built an inheritance scheme:

[image: skinparam { Shadowing false BackgroundColor transparent ClassBackgroundColor #E3E3E3 ClassBorderColor black PackageBorderColor black PackageBackgroundColor #9FC6DE ArrowColor #179c7d } rectangle "OSP-core" as OSP { abstract class Session { Registry : registry -- store(cuds_object) : Cuds load(*uids) : Iterator<Cuds> prune(rel) : void {abstract}_notify_delete(cuds_object) {abstract}_notify_update(cuds_object) {abstract}_notify_read(cuds_object) } class CoreSession implements Session { -- load(*uids) : Iterator<Cuds> } abstract class WrapperSession extends Session { SyntacticLayer: _engine Set : _expired Dict : _added Dict : _updated Dict : _deleted -- expire(*cuds_or_uids) : void expire_all() : void() refresh(*cuds_or_uids) : void _apply_added() : void _apply_updated() : void _apply_deleted() : void _notify_delete(cuds_object) : void _notify_update(cuds_object) : void _notify_read(cuds_object) : void _reset_buffers(changed_by) : bool _check_cardinalities() : void {abstract}_load_from_backend(uids) : void } class TransportSession implements WrapperSession { CommunicationEngineServer : com_facility Session : session_cls dict : session_objs -- startListening() : void handle_disconnect(user) : void handle_request(command, data, user) : str } abstract class DbWrapperSession extends WrapperSession { -- commit() : void load_by_cuba_key(cuba_key, update_registry) : Iterator<Cuds> store(cuds_object) : void {abstract}_initialize() : void {abstract}_load_first_level : void {abstract}_init_transaction : void {abstract}_rollback_transaction : void {abstract}close : void {abstract}_load_by_cuba(uids, update_registry): Cuds } abstract class SqlWrapperSession extends DbWrapperSession { -- _apply_added() : void _apply_updated() : void _apply_deleted() : void _load_from_backend() : Iterator<Cuds> _apply_deleted() : void load_first_level : void _load_by_cuba : void {abstract}_db_create(...) {abstract}_db_select(...) {abstract}_db_insert(...) {abstract}_db_update(...) {abstract}_db_delete(...) } abstract class SimWrapperSession extends WrapperSession { bool : _ran -- run() {abstract}_run(root_cuds) {abstract}_update_cuds_after_run(root_cuds) } } rectangle "Sqlite wrapper" as sqlite { class SqliteWrapperSession implements SqlWrapperSession { } } rectangle "SqlAlchemy wrapper" as sqlalchemy { class SqlAlchemyWrapperSession implements SqlWrapperSession { } } rectangle "Simlammps" as simlammps { class SimlammpsSession implements SimWrapperSession { } }]

Session inheritance scheme

Note

This is a reduced version and does not represent the entirety of the contained functions.

The simplest session, called CoreSession, is the default one for entities created in a python workspace
and has no backend. It just accesses the registry to manage the operations made by users.

All wrappers will share WrapperSession as an ancestor.
This will define which methods have to be implemented and _engine as the access point to a backend.

SimWrapperSession and DbWrapperSession further specify the behaviour of wrappers, defining the methods that
trigger an action on the backend (run and commit, respectively).

Note

You might have noticed that the semantic layer defines remove in the API,
but in the session and registry we use delete. The different between them
is conceptual: remove is interpreted as detachment i.e. removal of edges,
while delete implies the erasure of the node itself.

Buffers

Session classes under WrapperSession share 3 types of buffers, namely added, updated and deleted.
The previous buffers are repeated twice, first for the user and then for the engine,
so the number of buffers is actually 6.

As we have seen in the previous section, not all API calls trigger a change all the way to the backend.
In fact, most of them do not. This is done to limit the traffic in the slower sections
(networking or communicating with the engine).

On the other hand, the user should be able to access the latest version of the data
(meaning the changes they might have just done), and the wrapper should know what changes have taken place
since the last sync with the backend software (commit or run).
In order to achieve these, the changes done by the user directly modify the semantic layer and are
flagged in the buffers as changes to be propagated

Users or wrapper developers do not have to worry about updating this buffers, OSP-core handles them
(both filling them up and emptying them).

However, these structures will be used in the different _apply_<buffer> methods when developing a wrapper
(see this section of wrapper development).

Load from Backend

Similar to how the _apply_<buffer> methods are used to send information to the engine,
_load_from_backend has the purpose of updating the semantic layer with the latest information from the backend.

You can see in the get sequence diagram that when the information has potentially
changed in the backend (i.e the simulation has run, or a database has more data)
the get has to fetch the latest version.
To achieve this, OSP-core calls _load_from_backend with the list of desired uids,
and the wrapper wrapper will update the objects in the registry with the relevant
information and yield them.

Networking

Location: osp.core.session.transport

You may have noticed in the session inheritance scheme that there is TransportSession implementing the WrapperSession.
This session class is the way to connect to engines that are located in other machines through web sockets.

The behaviour is as follows:

	The user instantiates a TransportSessionClient and provides
the session class of the remote server, the hostname and the port.

	The TransportSessionClient will connect to a TransportSessionServer
through a CommunicationEngineClient.

	The server has the wrapper package installed locally.

	CommunicationEngineClient and CommunicationEngineServer (one on each side)
take care of the communication, so that:

	The methods that the user would call on the remote wrapper are encoded
with the relevant data (in json) and sent to the server.

	The server deserialises the data and calls the method on the wrapper.

	The results are serialised and sent back to the user´s local transport session.

The chosen implementation hides most of the work from the users and wrapper developers.
The only difference between a local wrapper and a remote one is the line where the wrapper session is instantiated, from:

sess = SomeWrapperSession(parameter_a, parameter_b)
wrapper = AWrapperInstance(session=sess)

to:

Once the server is properly setup
sess = TransportSessionClient(SomeWrapperSession, host, port,
 parameter_a, parameter_b)
wrapper = AWrapperInstance(session=sess)

Syntactic layer

This layer is in direct communication with the backend.
It has no ontological knowledge and must just provide a simple interface for the interoperability layer to interact with the wrapped application.

This means it may have to be a binding if the application is in a different language.
It could also be a file generator/parser for backends that only allow file i/o.
In other cases, (e.g. LAMMPS with PyLammps) it is provided by the backend itself, and requires no implementation.

Since the syntactic layer will greatly depend on the specific backend, no standardisation is provided there.

 Related links

Related links

Here are links to other projects relevant for this documentation.

SimPhoNy:

	GitLab’s SimPhoNy group [https://gitlab.cc-asp.fraunhofer.de/simphony]

	GitHub’s SimPhoNy group [https://github.com/simphony]

	OSP-core [https://github.com/simphony/osp-core]

	wrappers [https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers]

	wrapper development [https://github.com/simphony/wrapper-development]

Technologies used:

	Docker [https://www.docker.com/], used for the CI and engines

	Sphinx [https://www.sphinx-doc.org/], used for the documentation

	PlantUML [https://plantuml.com/], used for the diagrams

Acknowledgements

SimPhoNy OSP-core and wrappers development is supported by the following Grants:

	Project

	Programme

	Call ID

	Grant Agreement ID

	SimPhoNy

	FP7

	NMP-2013-1.4-1

	604005

	MarketPlace

	Horizon 2020

	H2020-NMBP-TO-IND-2016-2017

	760173

	FORCE

	Horizon 2020

	H2020-NMBP-TO-IND-2016-2017

	721027

	SimDOME

	Horizon 2020

	H2020-NMBP-TO-IND-2018-2020

	814492

	OYSTER

	Horizon 2020

	H2020-NMBP-2017-two-stage

	760827

	INTERSECT

	Horizon 2020

	H2020-NMBP-TO-IND-2018-2020

	814487

	ReaxPRO

	Horizon 2020

	H2020-NMBP-TO-IND-2018-2020

	814416

	APACHE

	Horizon 2020

	H2020-NMBP-ST-IND-2018

	814496

	NanoMECommons

	Horizon 2020

	H2020-NMBP-TO-IND-2020-twostage

	952869

	OntoTRANS

	Horizon 2020

	H2020-NMBP-TO-IND-2019

	862136

Some of the explanations and background provided have been adapted from Pablo de Andres’
master thesis on “Natural Language Search on an ontology-based data structure”.

The OSP-core Python package originates from the European Project
SimPhoNy [https://www.simphony-project.eu/] (Project Nr. 604005).
We would like to acknowledge and thank our project partners, especially
Enthought, Inc [https://www.enthought.com/],
Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE) [https://cimne.com/]
and the University of Jyväskylä [https://www.jyu.fi/en], for their important
contributions to some of the core concepts of OSP-core, which were originally
demonstrated under the project https://github.com/simphony/simphony-common.

Compatibility table

The following table describes the compatibilities between the SimPhoNy docs and
OSP-core up to version 2.5.1 of the documentation. For later releases, the
version number of the documentation matches the version number of the OSP-core
release to which it applies.

	SimPhoNy docs

	OSP-core

	2.5.1

	3.8.0

	2.5.0

	3.8.0

	2.4.5

	3.7.0

	2.4.4

	3.5.8-beta

	2.4.3

	3.5.5-beta

	2.4.2

	3.5.4-beta

	2.4.1

	3.5.3.1-beta

	2.4.0

	3.5.2-beta

	2.3.x

	3.4.0-beta

	2.2.x

	3.3.5-beta

	2.1.x

	3.3.0-beta

 License

License

Copyright © 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. acting on behalf of its Fraunhofer IWM. Contact: Pablo de Andrés, José Manuel Domínguez, Yoav Nahshon.

BSD 3-Clause License

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Contact

Contact

If you see something wrong, missing, or in need of clarification, you can directly
create an issue in here [https://github.com/simphony/docs/issues].

Any other questions, issues or comments can be directed to Pablo de Andrés,
José Manuel Domínguez and
Yoav Nahshon
from the Materials Data Science and Informatics Team, Fraunhofer IWM.

 Python Module Index

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 osp	

 	
 	
 osp.core.pico	

 	
 	
 osp.core.utils	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	__contains__() (osp.core.ontology.namespace.OntologyNamespace method)

 	__eq__() (osp.core.ontology.namespace.OntologyNamespace method)

 	
 	__getattr__() (osp.core.ontology.namespace.OntologyNamespace method)

 	__getitem__() (osp.core.ontology.namespace.OntologyNamespace method)

 	__iter__() (osp.core.ontology.namespace.OntologyNamespace method)

A

 	
 	add() (osp.core.cuds.Cuds method)

 	argname (osp.core.ontology.attribute.OntologyAttribute property)

 	
 	attribute (osp.core.ontology.oclass_restriction.Restriction property)

 	attributes (osp.core.ontology.oclass.OntologyClass property)

 	axioms (osp.core.ontology.oclass.OntologyClass property)

B

 	
 	branch() (in module osp.core.utils)

C

 	
 	change_oclass() (in module osp.core.utils)

 	check_arguments() (in module osp.core.utils)

 	check_schema() (osp.core.session.db.sql_wrapper_session.SqlWrapperSession method)

 	clone_cuds_object() (in module osp.core.utils)

 	close() (osp.core.session.core_session.CoreSession.CoreSessionSparqlResult method)

 	(osp.core.session.db.db_wrapper_session.DbWrapperSession method)

 	(osp.core.session.session.Session method)

 	Composition (class in osp.core.ontology.oclass_composition)

 	compute_auth() (osp.core.session.db.db_wrapper_session.DbWrapperSession static method)

 	(osp.core.session.wrapper_session.WrapperSession static method)

 	
 	convert_to_basic_type() (osp.core.ontology.attribute.OntologyAttribute method)

 	convert_to_datatype() (osp.core.ontology.attribute.OntologyAttribute method)

 	CoreSession (class in osp.core.session.core_session)

 	CoreSession.CoreSessionSparqlBindingSet (class in osp.core.session.core_session)

 	CoreSession.CoreSessionSparqlResult (class in osp.core.session.core_session)

 	create_from_cuds_object() (in module osp.core.utils)

 	create_from_triples() (in module osp.core.utils)

 	create_recycle() (in module osp.core.utils)

 	Cuds (class in osp.core.cuds)

 	Cuds2dot (class in osp.core.utils)

D

 	
 	datatype (osp.core.ontology.attribute.OntologyAttribute property)

 	DbWrapperSession (class in osp.core.session.db.db_wrapper_session)

 	delete_cuds_object() (osp.core.session.session.Session method)

 	
 	delete_cuds_object_recursively() (in module osp.core.utils)

 	description (osp.core.ontology.entity.OntologyEntity property)

 	direct_subclasses (osp.core.ontology.entity.OntologyEntity property)

 	direct_superclasses (osp.core.ontology.entity.OntologyEntity property)

E

 	
 	expire() (osp.core.session.wrapper_session.WrapperSession method)

 	
 	expire_all() (osp.core.session.wrapper_session.WrapperSession method)

 	export_cuds() (in module osp.core.utils)

F

 	
 	filter() (osp.core.session.registry.Registry method)

 	filter_by_attribute() (osp.core.session.registry.Registry method)

 	
 	filter_by_oclass() (osp.core.session.registry.Registry method)

 	filter_by_relationships() (osp.core.session.registry.Registry method)

G

 	
 	get() (osp.core.cuds.Cuds method)

 	(osp.core.ontology.namespace.OntologyNamespace method)

 	(osp.core.session.registry.Registry method)

 	get_attribute_by_argname() (osp.core.ontology.oclass.OntologyClass method)

 	get_attribute_identifier_by_argname() (osp.core.ontology.oclass.OntologyClass method)

 	get_attributes() (osp.core.cuds.Cuds method)

 	get_default_rel() (osp.core.ontology.namespace.OntologyNamespace method)

 	get_from_iri() (osp.core.ontology.namespace.OntologyNamespace method)

 	
 	get_from_suffix() (osp.core.ontology.namespace.OntologyNamespace method)

 	get_iri() (osp.core.ontology.namespace.OntologyNamespace method)

 	get_name() (osp.core.ontology.namespace.OntologyNamespace method)

 	get_neighbor_diff() (in module osp.core.utils)

 	get_relationships_between() (in module osp.core.utils)

 	get_subtree() (osp.core.session.registry.Registry method)

 	get_triples() (osp.core.cuds.Cuds method)

 	(osp.core.ontology.entity.OntologyEntity method)

H

 	
 	handshake() (osp.core.session.wrapper_session.WrapperSession static method)

I

 	
 	import_cuds() (in module osp.core.utils)

 	install() (in module osp.core.pico)

 	inverse (osp.core.ontology.relationship.OntologyRelationship property)

 	iri (osp.core.cuds.Cuds property)

 	(osp.core.ontology.entity.OntologyEntity property)

 	
 	is_a() (osp.core.cuds.Cuds method)

 	is_subclass_of() (osp.core.ontology.entity.OntologyEntity method)

 	is_superclass_of() (osp.core.ontology.entity.OntologyEntity method)

 	iter() (osp.core.cuds.Cuds method)

L

 	
 	log_buffer_status() (osp.core.session.wrapper_session.WrapperSession method)

M

 	
 	
 module

 	osp.core.pico

 	osp.core.utils

N

 	
 	name (osp.core.ontology.entity.OntologyEntity property)

 	
 	namespace (osp.core.ontology.entity.OntologyEntity property)

 	namespaces() (in module osp.core.pico)

O

 	
 	oclass (osp.core.cuds.Cuds property)

 	oclasses (osp.core.cuds.Cuds property)

 	OntologyAttribute (class in osp.core.ontology.attribute)

 	OntologyClass (class in osp.core.ontology.oclass)

 	OntologyEntity (class in osp.core.ontology.entity)

 	OntologyNamespace (class in osp.core.ontology.namespace)

 	OntologyRelationship (class in osp.core.ontology.relationship)

 	
 	operands (osp.core.ontology.oclass_composition.Composition property)

 	operator (osp.core.ontology.oclass_composition.Composition property)

 	
 osp.core.pico

 	module

 	